

Jack Rabbit III project and ammonia dispersion modelling

Simon Gant¹, Joseph Chang², Rory Hetherington¹, Lorenzo Mauri³, Shona Mackie³

¹Health and Safety Executive (HSE), ²RAND Corporation, ³Gexcon

2022 FLACS-CFD User Group Meeting, 1 November 2022

Jack Rabbit III: Ammonia release experiments

- Follow-on from Jack Rabbit I and II projects, led by the US Department of Homeland Security and Department of Defense
- Aim: to conduct large-scale anhydrous ammonia release experiments, fill critical hazard prediction data gaps and inform emergency responders
- Experiments currently in planning stage, initial modelling studies underway

10 Sec.

Images of Jack Rabbit II chlorine field trials at Dugway Proving Ground and wind tunnel / laboratory studies © DHS S&T CSAC and Arkansas University

For further information, see: https://www.uvu.edu/es/jack-rabbit/

JRIII Initial Model Inter-Comparison Exercise

- Aims: run a model inter-comparison exercise to evaluate the performance of atmospheric dispersion models using data from previous ammonia release experiments
 - To understand the accuracy of models that may be used to design the Jack Rabbit III trials, e.g., to design the JRIII sensor array
 - To identify important model input parameters that we may need to carefully assess or measure in the trials

Methodology

- Simulate 3 trials each from the Desert Tortoise and FLADIS pressure-liquefied ammonia field trials
- Desert Tortoise
 - Tests conducted in 1983 at DOE Nevada Test Site
 - Release rates of 81 133 kg/s
 - 10 41 tonnes of ammonia released
 - Dispersion measurements at 100 m and 800 m
 - Largest tests to date on ammonia

FLADIS

- Tests conducted in 1993-4 at Landskrona, Sweden
- Release rates of 0.25 0.55 kg/s
- Dispersion measurements at 20 m, 70 m and 240 m (transition from dense to passive dispersion)

Fig. 15. Desert Tortoise 2 (upwind wide angle camera) Time - 230s. | Lawrence Livermore National Laboratory

Methodology

- Participants provided with specified set of model inputs for Desert Tortoise and FLADIS
- Requested to provide basic set of model outputs (as a minimum)
 - Long time-averaged centerline plume concentrations for each of 6 trials
- Optionally, modelers can provide additional model outputs
 - E.g., predicted plume widths, temperatures, results from sensitivity tests
- Coordinators collated results, cross-plotted predictions against experimental measurements and shared results with participants
- Not a competition but a collaborative effort, with the ultimate goal of improving toxic industrial chemical modeling tools in general
- Timeline
 - Exercise initiated over Winter 2021-2022
 - Results shared with participants in Spring 2022
 - Concluded in Summer 2022, with aim to present results at GMU and Harmo conferences

Modeling Inputs

		DT1	DT2	DT4	FLADIS9	FLADIS16	FLADIS24
Orifice diameter	m	0.081a	0.0945	0.0945	0.0063	0.004	0.0063
Release height	m	0.79	0.79	0.79	1.5	1.5	1.5
Exit temperature	°C	21.5	20.1	24.1	13.7	17.1	9.45
Exit pressure ^b	bara	10.1	11.2	11.8	6.93 ^c	7.98 ^c	5.70 ^c
	barg	9.22	10.3	10.9	5.91	6.96	4.69
Release rate	kg/s	80.0 ^d	117 ^e	108 ^f	0.40	0.27	0.46
Release duration	S	126	255	381	900	1200 ^g	600
Site average wind speed	m/s	7.42	5.76	4.51 ^h	6.1 ⁱ	4.4	4.9 ^j
at reference height	m	2	2	2	10	10	10
Friction velocity	m/s	0.442	0.339	0.286	0.44	0.41	0.405
Surface roughness	m	0.003	0.003	0.003	0.04	0.04	0.04
Monin-Obukhov length	m	92.7	94.7	45.2	348	138	-77
Pasquill stability class	-	D	D	D-E ^k	D	D-E	C-D ^l
Ambient temperature	°C	28.8	30.4	32.4	15.5	16.5	17.5
at reference height	m	0.82	0.82	0.82	1.5	1.5	1.5
Ambient pressure	bar	0.909	0.910	0.903	1.020	1.020	1.013
Relative humidity	%	13.2	17.5	21.3	86	62	53.6
Averaging time for mean values	S	80	160	300	600	600	400

- All trials involved horizontal releases of pressure-liquefied ammonia over flat, unobstructed terrain
- Data taken primarily from SMEDIS database (https://admlc.com/smedis-dataset)
- Cross-checks carried out with other information sources
 - Modelers Data Archive
 - REDIPHEM
 - Original data reports, e.g.
 Goldwire *et al*. (1985)
 - Notes provided to explain choice of values

Possible Sensitivity Tests

- Aim: to understand impact of experimental uncertainties and modeling options
- Suggestions given in model exercise specification documents:

1.) Standing water at the Frenchman Flats test site in Desert Tortoise trials DT1 and DT2

		DT1	DT2
Relative humidity (%)	Baseline	13.2	17.5
	Sensitivity test	50	50
Monin-Obukhov length (m)	Baseline	92.7	94.7
	Sensitivity test	-20	-20
Pasquill stability class	Baseline	D	D
	Sensitivity test	С	С

2.) Wind speed variability in DT4

		DT4
Site average wind speed (m/s)	Baseline	4.51
	Sensitivity test	3.0

3.) Ammonia liquid rainout in the Desert Tortoise trials

 For models that have the capability to simulate a fixed fraction of liquid raining out from the jet and depositing to form an evaporating pool on the ground:

		DT1	DT2	DT4
Rainout mass fraction (%)	Baseline	5	5	5
	Sensitivity test (min)	0	0	0
	Sensitivity test (max)	20	36	30

- Tests could also be performed with rainout sub-models (if available)
- Compare predicted size of deposited ammonia pool to observed wetted area, if possible

4.) Pasquill Stability Classes in DT4, FLADIS16 and FLADIS24

 For models that use Pasquill stability class instead of Monin-Obukhov length to specify the model atmospheric boundary layer, the following tests could be undertaken:

		DT4	FLADIS16	FLADIS24
Pasquill stability class	Baseline	D	D	С
	Sensitivity test	E	E	D

5.) Wind and turbulence profiles in the FLADIS trials

 Use wind profiles specified in the SMEDIS database and turbulence conditions specified in Table 8 or those extracted directly from the FLADIS dataset measurements (if possible).

Some modelers have examined additional factors, e.g., specification of equivalent vapor-only source conditions

Flacs-CFD Simulations

- Arcmax concentrations instead of sensor locations
 Follow plume
- Heat switch on

All solid surfaces initialised at ambient temperature

- Terrain used in place of a 'box' for the ground
 - -> ground-air heat transfer captured
 - -> surface roughness used to generate wind profile throughout domain
 - -> esp. important for FLADIS, where Pasquil classes are used
- Surface-> air heat flux required for Pasquill classes

Need:

Monin Obukhov length, roughness

Humdity and temperature -> air specific heat capacity and density

Figure 1 Map of the FLADIS test site including the array of measurement positions and the coordinate system, from Nielsen et al. (1994). The building labelled 1 is of a conical shape.

Flacs-CFD Simulations

- Arcmax concentrations instead of sensor locations
 Follow plume
- Heat switch on

All solid surfaces initialised at ambient temperature

- Terrain used in place of a 'box' for the ground
 - -> ground-air heat transfer captured
 - -> surface roughness used to generate wind profile throughout domain
 - -> esp. important for FLADIS, where Pasquil classes are used
- Surface-> air heat flux required for Pasquill classes

Need:

Monin Obukhov length, roughness

Humdity and temperature -> air specific heat capacity and density

Figure 1 Map of the FLADIS test site including the array of measurement positions and the coordinate system, from Nielsen et al. (1994). The building labelled 1 is of a conical shape.

Steady state solver

Large domain, long release time -> transient simulations impractically long

Steady state solver

Large domain, long release time -> transient simulations impractically long

FLACS criteria for steady-state:

Pressure

Fuel mass

Fuel rate

Flammable mass

Velocity

Steady state solver

Large domain, long release time -> transient simulations impractically long

FLACS criteria for steady-state:

Pressure

Fuel mass

Fuel rate

Flammable mass

Velocity

Wind and buildings not aligned

- -> vortex shedding
- -> no velocity convergence to steady-state
- -> turn off convergence checking except for fuel mass

Steady state solver

Large domain, long release time -> transient simulations impractically long

FLACS criteria for steady-state:

Pressure

Fuel mass

Fuel rate

Flammable mass

Velocity

Wind and buildings not aligned

- -> vortex shedding
- -> no velocity convergence to steady-state (fluctuating residual)

Steady state solver

Large domain, long release time -> transient simulations impractically long

Flacs-CFD criteria for steady-state:

Pressure

Fuel mass

Fuel rate

Flammable mass

Velocity

Wind and buildings not aligned

- -> vortex shedding
- -> no velocity convergence to steady-state (fluctuating residual)
- -> adjust convergence tolerance appropriately
- -> turn off convergence checking except for fuel mass

FLASH utility

FLASH inputs:

Orifice area
Liquified gas temperature at orifice
Ambient air temperature
-> calculates vapour P for release

FLASH assumes:

Total P in reservoir = vapour P

For higher exit P:

Add vapour P from other gases in the reservoir

FLASH utility

FLASH inputs:

Orifice area Liquified gas temperature at orifice

Ambient air temperature

-> calculates vapour P for release

FLASH assumes:

Total P in reservoir = vapour P

For higher exit P:

Add vapour P from other gases in the reservoir

STEPS:

- Calculate stagnation P for release (from provided properties)
- Run FLASH × 1:
 - -> vapour P for ammonia at release T
- Difference is 'extra' P required
- Run FLASH × 2:
 - add 'extra' P as contribution from other gasses

Gexcon.com

FLASH utility

Assumed:

ellipse centred at orifice height uniform velocity distribution across source

Leak properties for simulation

GEXCON

FLADIS

- Grid recommendations for resolution across an area leak are vague
 - Leak edges on grid planes
 - Leak should be covered by ≥ 3 cells
 - Cells covering leak should be < 4 m
- Used 10 and 20 cells and 2 cm cells (smallest recommended) for leak
 - Results differed between 10 and 20 cells
 - Results v similar for 2 cm cells and 20 cells
 - -> used 20 cells to resolve leak

Desert Tortoise

- Equivalent source
 - Calculated as for FLADIS Shape:

Parabolic velocity profile across area

RESULTS OF SIMULATIONS

Post-process results to obtain maximum concentration (at any point in time and space)
 for different distances from the release point

- Convergence of steady state solver in 2 to 4 hours (coarse grid, 4 cores)
- Little sensitivity to refinement of the grid
 - Baseline: about 700k control volumes (typical FLACS grid size), minimum grid-cell size 0.07m-0.1m
 - Refined: 1200k control volumes, minimum grid-cell size of size 0.035m-0.5m (half)

Far field

- Overprediction except for test 16
- Outflow boundary condition: no reflection of concentration (domain boundary at 300m)
- No lift-off of the plume in simulations
- Changes of mean velocity in time not simulated, may have contributed dispersing the plume

Pseudo source

- a) common source provided for modelling exercise (named CERC in the plots)
- b) in-house: FLASH utility (FLACS)
- Higher mass rate predicted by FLASH (assumes metastable conditions at the orifice) reflected in higher concentrations

case=fl16

- Similar setup (flashing ammonia release in flat area)
- Different spatial scale, shows some heavy-gas behavior

- Transient simulations completed in 14 to 27 hours (coarse grid, 4 cores)
- Little sensitivity to refinement of the grid
 - Baseline: about 300k control volumes, minimum grid-cell size 0.25m
 - Refined: 500k control volumes, minimum grid-cell size of size 0.15m (either vertical or horizontal refinement)
- Overprediction in the near field and underprediction in the far field

- Rectangular area leak (area and source conditions from pseudo source calculation)
- Aspect ratio (extracted form experimental data) 2 to 5 (flatter)
 - Marginal effect, more pronounced in the near field

- Profile: change velocity profile of the pseudo-source from flat to parabolic
 - Significant effect also in the far field (predicted concentrations closer to measured ones)

- Pseudo-source calculation: FLACS built-in utility
 - FLACS pseudo-source calculation assumes metastable conditions at the orifice (pure liquid): conservative mass rate predictions
 - Shift in pseudo-source location; increase of predicted ammonia concentration

- Considerations on rainout:
 - Simulations run with no rainout (no pool model) for comparison with other models
 - Formation of pool may explain the overprediction/underprediction trend in the near and far field (not tested)
 - Rainout fraction was not directly measured in the experiments, only estimated
 - FLASH predicts no rainout, rainout model fit to free jets not crawling jets / wall jets

- Considerations on rainout:
 - New rainout method implemented based on critical diameter for which vaporization time scale Tv
 equals settling time scale Ts (proportional to source elevation from the ground)
 - Fraction of droplets with diameter above the critical value will rain-out
 - Sensible predictions for the present tests

test	Predicted rainout mass fraction
Fladis 9	0
Fladis 16	0
Fladis 24	0
Desert Tortoise 1	20%
Desert Tortoise 2	38%
Desert Tortoise 4	23%

Requires additional testing and calibration

SUMMARY FLACS SIMULATIONS

- Takeaways for Gexcon
 - Dispersion: steady-state solver efficient, may require advanced convergence settings depending on the scenario
 - FLASH utility: calculation of mass rate and other conditions at the orifice reliable/conservative
 - FLASH utility: indications on improvements on pseudo-source shape and rainout fraction
 - New rainout model implemented, requires further testing

Participants in the JRIII Initial Modeling Exercise

#	Organization	Model	Model Type			Desert Tortoise			FLADIS			
			Empirical nomogram/ Gaussian plume	Integral	Gaussian Puff/ Lagrangian	CFD	1	2	4	9	16	24
1	Air Products, USA	VentJet										
2	DAM Cormony	AUSTAL										
3	BAM, Germany	VDI										
4	DCA France	PHAST v8.6										
5	DGA, France	Code-Saturne v6.0										
6	DNV, UK	PHAST v8.61										
7	DSTL, UK	HPAC v6.5										
8	DTRA, ABQ, USA	HPAC v6.7										
9	DTRA, Fort Belvoir, USA	HPAC										
10	EDF/Ecole des Ponts,	Code-Saturne v7.0										
11	France	Crunch v3.1										
12	Equinor, Norway	PHAST v8.6										
13	FFI, Norway	ARGOS v9.10										
14	FOI, Sweden	PUMA										
15	Gexcon, Netherlands	EFFECTS v11.4										
16	Gexcon, Norway	FLACS										
17	GT Science & Software	DRIFT v3.7.19										
18	Llama Canaviltanta LICA	Britter & McQuaid WB										
19	Hanna Consultants, USA	Gaussian plume model										
20	LICE LIK	DRIFT v3.7.12										
21	HSE, UK	PHAST v8.4										
22	INERIS, France	FDS v6.7										
23	JRC, Italy	ADAM v3.0										
24	NSWC, USA	RAILCAR-ALOHA										
25	Shell, UK	FRED 2022										
26	Syngenta, UK	PHAST v8.61										

All Model Results

Gaussian Puff and Lagrangian Models

Gaussian Puff and Lagrangian Models

Gaussian Puff and Lagrangian Models

Integral Models

Integral Models

Empirical Nomograms, Gaussian Plume

Empirical Nomograms, Gaussian Plume

Empirical Nomograms, Gaussian Plume

Gaussian plume model agrees well with FLADIS data, despite not accounting for dense-gas effects

CFD

CFD

Summary / Conclusions

- Strong USA/UK/European support for this initial JRIII modeling exercise
 - Total of 26 sets of model predictions provided by 21 independent groups
- Agreement between model predictions and measurements varied between different models
- Useful insights gained through discussions between participants into choice of modeling approach, including discussions between different groups all using the same model
 - Experience useful for some groups in improving modeling approach going forward for JRIII
- Sensitivity tests: relatively strong impact from vapor-only source specification
 - Can we take measurements in JRIII trials to reduce this uncertainty to modeling of source conditions?
 - Further sensitivity analysis undertaken by DSTL (including ensemble modeling)
- Modeling exercise and analysis of the Desert Tortoise and FLADIS data provided useful insights into design of the future JRIII trials, e.g.:
 - Desert Tortoise trials highlighted the need for measurements to extend further downwind to capture densegas/passive/buoyant(?) dispersion, i.e., full extent of hazardous cloud
 - FLADIS trials also showed that releases of this scale do not exhibit significant dense-gas effects
- Future collaborative JRIII modeling exercise planned for Winter/Spring 2022-2023: modeling a previous large-scale ammonia incident

Acknowledgements

Many thanks to all modeling groups for their valuable contributions for this exercise

Thank you

Joseph Chang², Sun McMasters³, Ray Jablonski³, Helen Mearns³, Shannon Fox³, Ron Meris⁴, Scott Bradley⁴, Sean Miner⁴, Matthew King⁴, Steven Hanna⁵, Thomas Mazzola⁶, Tom Spicer⁷, Rory Hetherington¹, Alison McGillivray¹, Adrian Kelsey¹, Harvey Tucker¹, Graham Tickle⁸, Oscar Björnham⁹, Bertrand Carissimo¹⁰, Luciano Fabbri¹¹, Maureen Wood¹¹, Karim Habib¹², Mike Harper¹³, Frank Hart¹³, Thomas Vik¹⁴, Anders Helgeland¹⁴, Joel Howard¹⁵, Veronica Bowman¹⁵, Daniel Silk¹⁵, Lorenzo Mauri¹⁶, Shona Mackie¹⁶, Andreas Mack¹⁶, Jean-Marc Lacome¹⁷, Stephen Puttick¹⁸, Adeel Ibrahim¹⁸, Derek Miller¹⁹, Seshu Dharmavaram¹⁹, Amy Shen¹⁹, Alyssa Cunningham²⁰, Desiree Beverley²⁰, Matthew O'Neal²⁰, Laurent Verdier²¹, Stéphane Burkhart²¹, Chris Dixon²², Sandra Nilsen²³

¹Health and Safety Executive (HSE), ²RAND Corporation, ³Chemical Security Analysis Center (CSAC), Department of Homeland Security (DHS), ⁴Defense Threat Reduction Agency (DTRA), ⁵Hanna Consultants, Inc., ⁶Systems Planning and Analysis, Inc. (SPA), ⁷University of Arkansas, ⁸GT Science and Software, ⁹Swedish Defence Research Agency (FOI), ¹⁰EDF/Ecole des Ponts, ¹¹European Joint Research Centre (JRC), ¹²Bundesanstalt für Materialforschung und - prüfung (BAM), ¹³DNV, Stockport, ¹⁴Norwegian Defence Research Establishment (FFI), ¹⁵Defence Science and Technology Laboratory (DSTL), ¹⁶Gexcon, ¹⁷Institut National de l'Environnement Industriel et des Risques (INERIS), ¹⁸Syngenta, ¹⁹Air Products, ²⁰Naval Surface Warfare Center (NSWC), ²¹Direction Générale de l'Armement (DGA), ²²Shell, ²³Equinor

Contacts Gexcon:

Lorenzo Mauri (lorenzo@gexcon.com)

Shona Mackie (shona@gexcon.com)

Contact points JR III:
Joe Chang (<u>jchang@rand.org</u>)
Simon Gant (<u>simon.gant@hse.gov.uk</u>)

Acknowledgement: The contributions of HSE staff to this work were funded by HSE. The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy

Plume Half-Widths

GEXCON Predicted vs Measured Centerline Concentrations

Baseline Model	DT1		DT2		DT4		FLADIS9			FLADIS16			FLADIS24		
	100m	800m	100m	800m	100m	800m	20m	70m	238m	20m	70m	238m	20m	70m	238m
ADAM-EU-JRC	117112	6384	154475	10553	143547	12351	14411	2157	238	10990	1996	267	14404	1437	137
ALOHA-NSWC	98384	2609	136035	4569	171313	6370	9841	837	80	13690	1165	111	8974	740	65
ARGOS-FFI	11447	569	23940	1417	28937	1123	587	61	7	702	63	7	517	68	10
AUSTAL-BAM	104000	6886	586000	28600	234000	18100	22600	7600	667	31300	9470	608	36800	11700	988
CODE-SAT-DGA	-	-	-	-	-	-	14989	2125	138	21800	2034	294	30558	3691	405
CODE-SAT-EDF	-	-	-	-	-	-	-	-	-	18765	1433	188	-	-	-
BM-SH	82865	5877	90638	8859	93336	9749	-	-	-	-	-	-	-	-	-
CRUNCH-EDF	107680	17672	112747	28378	100798	30313	-	-	-	-	-	-	-	-	-
DRIFT-GTS	155947	11319	174294	22120	152100	25615	11187	1443	199	7579	894	115	12195	1028	109
DRIFT-HSE	142405	9534	156941	18926	141061	21770	11912	1508	202	8104	938	117	12689	983	111
EFFECTS-GEXC	126894	5746	165882	9398	152307	11193	16658	1680	162	16868	1566	165	20835	1530	143
FDS-INERIS	-	-	-	-	-	-	13144	1486	171	11207	1506	172	20700	2650	301
FLACS-GEXC	118013	3584	125254	5011	137370	11323	19499	1722	155	14470	1453	126	21359	2695	240
GAUS-SH							11668	915	85	9895	833	79	16169	1305	122
HPAC-DSTL	95614	2657	104598	5186	159609	7915	6622	851	129	6498	890	98	5463	642	87
HPAC-DTRA-SM	53559	3700	504253	6399	495409	6358	458	194	35	300	132	26	590	118	18
PHAST-DGA	46096	9419	85734	11740	51786	9898	4256	2766	311	6069	2287	180	4967	3158	648
PHAST-DNV	80899	4654	96505	7501	98310	12113	11592	1541	161	12916	2917	372	14947	3186	155
PHAST-HSE	75588	8007	91726	12332	85144	11056	4268	2765	437	5327	2652	196	4959	3108	653
PHAST-SYN	78982	8117	90870	12853	86736	11374	4266	2556	227	5324	2281	132	4962	2728	256
PUMA-FOI	88366	4147	122102	8386	239535	16667	19252	1290	106	12378	898	76	17121	707	54
VDI-BAM	264000	11100	400000	20700	470000	24200	94800	33300	1309	88900	26500	629	96700	36000	2030
VENTJET-AP	96962	5865	122778	9952	118191	10257	12476	1657	189	8224	1030	116	15918	2092	238
Experiment	49490	8790	82920	10910	57300	16678	14190	1100	70	17010	1190	140	28180	2610	70

Desert Tortoise

Predicted versus Measured Centerline Concentrations

All results

CFD, Gaussian puff, Lagrangian

Empirically-based nomograms, integral, Gaussian plume

Desert Tortoise

Predicted versus Measured Centerline Concentrations

concentrations in Desert Tortoise

All results

CFD, Gaussian puff, Lagrangian

Empirically-based nomograms, integral, Gaussian plume

FLADIS

Predicted versus Measured Centerline Concentrations

All results

Generally less scatter with nomograms/integral/Gaussian plume models, with exception of VDI model

CFD, Gaussian puff, Lagrangian Empirically-based nomograms, integral, Gaussian plume

Geometric Mean Bias versus Geometric Variance

$$MG = exp \left(\ln \left(\frac{C_m}{C_p} \right) \right)$$
 $VG = exp \left(\left[\ln \left(\frac{C_m}{C_p} \right) \right]^2 \right)$

Sensitivity Tests: DTRA Albuquerque (Sean Miner)

Sensitivity Tests: Dstl (Joel Howard)

-20

Sensitivity test

Sensitivity test

Baseline

Pasquill stability class

-20

FLADIS16 FLADIS24

DT4

D

Baseline

Sensitivity test

Sensitivity Tests: PHAST (Frank Hart)

Site average wind speed (m/s)

DT4

4.51

3.0

Pasquill stability class

Baseline

Sensitivity test

Sensitivity Tests: PHAST-SYN (Adeel Ibrahim)

Sensitivity Tests: EFFECTS-GEXC (Andreas Mack)

Minor sensitivity to:

- Increased liquid rainout from 0% to 20% or 36%
- Surface roughness increased from 3 mm (base case) to 15 mm
- Wind speed reduced from 4.5 m/s to 3.0 m/s in DT4

Sensitivity Tests: PUMA-FOI (Oscar Björnham)

Sensitivity Tests: FLACS-CFD

