
ABSTRACT

This document examines the Underlying Flow Regime (UFR) of a turbulent, axisymmetric, free-
plume in a quiescent, unstratified environment. Only the far-field behaviour is considered where the 
buoyancy-driven plume exhibits self-similar behaviour. Another related QNET-UFR documents the 
unsteady turbulent behaviour near plume sources.

Turbulent,  axisymmetric  plumes  are  a  feature  of  many  important  scientific  and  engineering 
applications including flows generated by smokestacks, cooling towers, fires and large geothermal 
events, such as volcanoes. The source of the buoyancy may be provided by temperature differences 
in the fluid or can be related to two fluids of different density mixing together. In some cases, the 
plumes originate from a source such as a pipe with some initial momentum. These flows, known as 
forced  plumes  or  buoyant  jets,  feature  jet-like  behaviour  near  the  source,  a  transitional  region 
further  downstream and  then,  even  further  downstream,  fully-developed  plume  behaviour  (see 
Figure 1). 

Figure 1 Flow development of a buoyant jet, from Chen & Rodi [1]

A  brief  review  is  provided  in  this  UFR  of  experiments  and  CFD  studies  of  fully-developed 
axisymmetric plumes. The recent study by Van Maele & Merci  [2] is considered in some detail. 
Their work examined the performance of standard and realizable  k – ε RANS models against the 
experimental  work  of  George  et  al. [3].  It  showed  that  both  standard  and  realizable  models 
combined  with  the  Generalized  Gradient  Diffusion  Hypothesis  (GGDH)  for  the  buoyancy 
production term give reasonable predictions of the mean flow behaviour. The Standard Gradient 
Diffusion  Hypothesis  (SGDH)  buoyancy  model  produces  too  little  turbulent  mixing  and  as  a 
consequence underpredicts spreading rates and overpredicts mean centreline values of velocity and 
temperature/concentration.  The conclusions from the earlier  work of  Chen & Rodi  [1] are also 
discussed. 
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Best-practice  advice  is  provided  for  CFD  practitioners  on  key  modelling  issues,  such  as 
computational  grid  requirements  and  the  use  of  simplifications,  such  as  the  Boussinesq 
approximation. 

There is some uncertainty over the results from recent measurements reported in the literature (see 
Section 2.3.1). It is recommended that an in-depth review of experiments be undertaken, similar to 
the comprehensive study made 30 years ago by Chen & Rodi [1]. The findings of such work could 
affect the reported accuracy of CFD models. 
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 1 INTRODUCTION

This  document  focusses  on  the  underlying  flow  of  the  fully-developed,  steady,  vertical, 
axisymmetric  (round)  plume  flowing  in  a  still  and  unstratified  environment.  This  includes 
consideration  of  both  rising,  positively-buoyant  plumes  and  falling,  dense,  negatively-buoyant 
plumes. Only turbulent plumes are considered as this covers nearly all relevant engineering and 
environmental applications. For a review of laminar plumes, see [1][4][5]. 

This  UFR is  relevant  to  the Application  Challenges  AC4-03 on air  flows in  an open plan air-
conditioned office, AC4-04 on tunnel fires, and UFR4-09 on confined buoyant plumes.

 1.1 Overview of the UFR

Free vertical buoyant plumes and free-jets are related phenomena, both having a core region of 
higher momentum flow surrounded by shear layers bounding regions of quiescent fluid. However, 
whereas for jets the driving force for the fluid motion is a pressure drop through an orifice, for 
plumes the driving force is buoyancy due to gradients in fluid density. Plumes can develop due to 
density gradients caused by temperature differences, for example in fires, or can be generated by 
fluids of different density mixing, such as a release of hydrogen in air. There are many flows of 
both engineering and environmental importance that feature buoyant plumes, ranging from flows in 
cooling towers and heat exchangers to large geothermal events such as volcanic eruptions. For a 
good introduction to turbulent jets and plumes, see Chen & Rodi [1] or List [6][7]. A more general 
discussion of buoyant flows is given in Gebhart et al. [4].

Figure 1 Flow development of a buoyant jet, from Chen & Rodi [1]
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A free vertical buoyant plume can be split into a number of regions, see Figure 1. Close to the 
source, the flow is affected by details of the particular release conditions. This could include inertial 
effects if, for example, the flow involves a release of buoyant fluid through a nozzle under pressure. 
Other  complexities  near  the  source  may  be  associated  with  combustion  in  fire  plumes.  At  a 
sufficient distance further downstream, the effects of the source conditions are lost, buoyancy forces 
dominate the flow and it exhibits plume behaviour. Between the near-source and far-field regions, 
there is a transitional region. 

Plumes arising from continuous releases of buoyant fluid with significant initial  momentum are 
classified as forced plumes or buoyant jets. Those involving a discrete release of buoyant fluid are 
termed  thermals or  puffs (e.g. as  caused  by  an  explosion),  and  starting  plumes  refer  to  the 
advancing front from a continuous buoyancy source in the initial  phase of the release before a 
steady plume becomes established.

Buoyant  jets  (i.e. plumes  with  significant  initial  momentum)  occur  in  a  number  of  important 
practical  applications  such  as  the  flow  from  smokestacks  and  cooling-water  discharges  into 
reservoirs. It is important in these cases to be able to identify when the transition occurs from jet-
like behaviour near the source to plume-like behaviour in the far field. A common dimensionless 
parameter used to distinguish these two flow regions is the densimetric Froude number,  Fr, given 
by:

Fr= U

[g D ∞−
∞

]
(1)

where U is the mean velocity, g gravity, D a characteristic length-scale, and ρ density. Subscript ∞ 
refers to the far-field value1. The Froude number represents the ratio of inertial forces to buoyancy 
forces. It ranges in value from near zero for pure plumes, towards infinity for jets with negligible 
buoyancy.  Chen  &  Rodi  [1] analysed  a  number  of  jet  and  plume  experiments  and,  using 
dimensional analysis, produced the graph reproduced in Figure 2, which shows the transition from 
jet- to plume-like behaviour with increasing Fr2. 

Figure 2 shows how the difference in mean density between the axis of the plume and the far field 
value  decays  with  distance  from  the  inlet.  In  the  jet-like  region  near  the  source,  the  density 
difference decays at a rate (x – x0)-1 whereas in the fully-developed plume region it decays faster at 
(x –  x0)-5/3.  Here, x is the axial  coordinate and  x0 is the “virtual”  source location,  see Figure 1. 
Empirical correlations for the decay rate of mean velocity and scalars in buoyant jets are given in 
Gebhart  et  al. [4].  Both jets  and plumes  spread linearly  in  a  uniform environment,  although at 
different rates. Empirical correlations for the spreading rate in plumes are given later.

Another common measure used to assess when buoyant jets reach a fully-developed state is the 
Morton length scale, lM:

lM =
M 0

3/4

F 0
1/2 (2)

1 In some cases, the densimetric Froude number is defined with the density difference made dimensionless using the 
plume source density, ρ, instead of the ambient density  ρ∞, e.g. Chen & Rodi [1] and Hossain & Rodi [8]. 

2 The local Froude number in this case is evaluated on the plume centreline. Note, the Fr defined by Chen & Rodi [1] is the square 
of the definition of Fr given above.
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where M0 and F0 are the specific momentum and buoyancy added at the source of the plume:

M 0=2∫
0

r 0

U 2r dr F 0=2∫
0

r 0

Ug 
∞

r dr (3)

For plumes with uniform properties at the source, this is equivalent to: 

lM =
Fr0 D

/4 1 /4 (4)

where  Fr0  is  the  the  source  densimetric  Froude number  at  the  source  and  D the  inlet  source 
diameter.

Figure 2 Decay of centreline density in round plumes from Chen & Rodi [1]

Papanicolau  &  List  [9] suggest  that  jet-like  conditions  occur  in  turbulent  buoyant  jets  for 
 x−x0 / lM 1 and fully-developed plume-like  conditions  for   x− x0 / lM 5 .  However,  there  is 
some debate in the literature over the distance required to reach fully-developed plume conditions, 
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see for example Dai et al. [10] and Shabbir & George [11]. Mean parameters (velocity, temperature 
etc.) require a shorter distance to reach a fully-developed state than statistical quantities such as 
Reynolds stresses.  

An important feature of  the mean flow in the fully-developed region of turbulent buoyant plumes is 
“self-similarity”  or “self-preserving” behaviour.  In positively-buoyant  plumes,  as the less dense 
fluid rises and spreads,  the  mean velocity  peak on the plume centreline  decays  and the plume 
becomes  wider.  However,  the  shape  of  the  mean  velocity  profile  remains  the  same.  If  the 
dimensionless radial profiles of the mean velocity are plotted at different vertical positions in the 
plume on the same graph axes, the curves all fall  on top of one another.  Self-similarity is also 
exhibited  in  the  dimensionless  temperature  and  species  concentration  profiles  and  in  the 
dimensionless  RMS turbulent  fluctuations  of velocity,  temperature and concentration  (  u2/U 0 , 
 v2/U 0 , 2/0  or  c2/C0 ). Sample data from the experiments of Papanicolaou & List [9] and 
Dai et al. [10] shown in Figures 3 and 4 demonstrate this behaviour. 

Figure 3 Dimensionless mean velocity and mean concentrations profiles in a turbulent 
axisymmetric plume, from Papanicolaou & List [9].
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Figure 4 Dimensionless mixture fraction fluctuation profiles in a turbulent axisymmetric plume, 
from Dai et al. [10]

 1.1.1 Plume Analysis Based on Integral Equations

One  means  of  analysing  the  flow behaviour  of  self-similar  buoyant  plumes  is  to  use  integral 
methods. This involves assuming profiles for the velocity, temperature and concentration based on 
experimental  observations.  The mean flow equations  are  then integrated  over  the whole plume 
cross-section  to  produce  ordinary  differential  equations.  The  entrainment  rate  is  also  assumed, 
usually as a function of the local centreline velocity.

Theoretical analysis of self-similar plumes using integral methods began more than 50 years ago 
with the works of Yih [12], Rouse et al. [13], Batchelor [14] and Morton et al. [15] for plumes with 
small density differences in unstratified and stratified environments. More recently, these theories 
have been extended to consider plumes with significant density differences [16][17], with unsteady 
source strengths [18][19][20] and fire plumes [21][22][23][24].

The simplest  analysis  proceeds  by assuming that  the velocity  and buoyancy force are  constant 
across the plume and zero outside it (i.e. a 'top hat' profile). Transport equations for the conservation 
of volume, momentum and density deficit are integrated analytically with respect to the vertical 
distance, x, to arrive at expressions for the plume radius, b, the vertical velocity, U, and the density, 
ρ,  inside the plume:
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b=6
5
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1/3

x−1 /3      g
 1−
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−1/3

x−5 /3 (5)

where  ρ1 is a reference density,  α is an empirical entrainment coefficient and  Q is the buoyancy 
flux, given by:

Q=b2 U g  1−
1  (6)

The empirical entrainment coefficient, α, relates the entrainment velocity, Ue, to the plume velocity 
(Ue = αU). This analysis was first published by Schmidt [25] and is described in Morton et al. [15]. 

Morton et al. [15] extended the above approach, assuming Gaussian radial profiles for the velocity 
and buoyancy force instead of top-hat profiles. They found that the spreading rate of the plume 
(db/dx) was equal to 6α/5 and was independent of the strength of the buoyancy source. In their 
analysis they defined the plume radius, b, as the point where the velocity fell to e-1 of its centreline 
value  (0.37Uc). Experiments  undertaken by Morton  et  al. [15] of  positively  buoyant  plumes  in 
stratified saline solutions found the entrainment coefficient to be around  α = 0.093. More recent 
studies  have  suggested  a  value  of  α  ≈  0.082  for  plumes  in  unstratified  environments  (for 
comparison, the entrainment constant for pure jets is α ≈ 0.057) [4][26]. 

Recently, Diez & Dahm [27] developed an alternative integral approach that does not rely upon the 
entrainment coefficient, α. Instead, it uses the integral equation for the momentum flux to develop 
an equation for the local centreline velocity.  Diez & Dahm's model relies upon a parameter,  cδ, 
which experiments show to be constant in the far-field of both jets and plumes. 

Further details of integral methods applied to plumes and jets, including discussion of empirical 
models for α as a function of the Froude number, can be found in Chen & Rodi [1] and Gebhart et  
al. [4]. 

Whilst integral methods can provide accurate results for relatively simple plumes it is difficult to 
extend the approach to model more complex turbulent flows, where for example the plume may hit 
a wall  or encounter  regions of flow recirculation.  To study these more  complex  flows,  a more 
general-purpose CFD approach must be used. 

 1.2 Review of UFR Studies and Choice of Test Case

CFD simulations of fully-developed, self-similar turbulent buoyant plumes have, to date, mainly 
solved the Reynolds-Averaged Navier Stokes (RANS) equations. Whilst Large Eddy Simulation 
(LES)  can  in  theory  be  used  to  study  such  flows,  it  involves  significantly  greater  computing 
resources.  To the  authors  knowledge,  the  only study of  the  far-field,  self-similar  behaviour  of 
plumes using LES is that undertaken by Zhou et al. [28][29]. They simulated the thermal plumes of 
George  et al.  [3] and Shabbir & George  [11] in  [28] and those of Cetegen  [30] in  [29]. Whilst 
axisymmetric RANS simulations of these flows would involve meshes with around 4,000 cells, the 
large-eddy simulations of Zhou et al. [28][29] used more than 4 million cells. 

Before describing the experimental  and CFD studies on which this UFR documentation will be 
based, a brief review is provided below of other studies of the axisymmetric buoyant plume which, 
for various reasons, have not been adopted here. 
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 1.2.1 Review of the nearly-relevant work

Experiments

There have been numerous experimental studies of the turbulent buoyant plume. A major review 
was undertaken by Chen & Rodi in 1980 [1]. They provided recommended values for the spreading 
rates of the plume based on the momentum and temperature or concentration of  dr U1/2/dx=0.112  
and dr f1/2/dx=0.104 . The momentum value dr U1/2/dx  was based on the experiments of George 
et al. [3] which were considered to be the most consistent of the reviewed data. 

Following Chen & Rodi's review, in the late 1980's and early 90's, Shabbir, George and Taulbee at 
the University of Buffalo published a number of papers on buoyant plume experiments [31][32][33]
[34]. In [33] they compared the magnitude of various terms in the k – ε model equations to values 
obtained directly from experiments. A particularly significant finding was that the streamwise heat 
flux, uT , was underpredicted by a factor of four using the standard k – ε model with the Simple 
Gradient Diffusion Hypothesis (SGDH) (described later). Apart from this shortcoming, however, 
the k – ε model was found to perform reasonably well. 

More recently, Dai et al. [10] performed experiments using negatively-buoyant plumes of CO2 and 
SF6 in air. A summary table, comparing their results for the axisymmetric buoyant plume against 
those of Papantoniou & List [35], Papanicolaou & List [9][36], Shabbir & George [34] and George 
et al. [3] is reproduced in Table 1a.

Table 1a Summary of self-preserving buoyant plume properties, from Dai et al. [10]
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Table 1b Densimetric Froude numbers for the experiments given in Table 1a, calculated using 
Equation (1).

Source Fr0

Dai et al. [10] 3.75, 7.80 

Papantoniou and List (1989) 1.89, 2.24

Papanicolaou and List (1988) 0.87 to 3.88 

Papanicolaou and List (1987) 0.41 to 7.79

Shabbir and George (1992) 1.60, 1.80

George et al. (1977) 1.23

The third and fourth columns of Table 1a define the extent of the fully-developed flow regions in 
the axial direction made dimensionless using the source diameter,  d, and the Morton length scale, 
lM.. Dai  et al. [10][37][38][39], suggested that the large range in values of  (x  -  x0)/lM shown in 
Table 1a is due to the fact that many researchers had incorrectly made measurements of transitional 
plumes exhibiting quasi-jet-like behaviour, rather than fully-developed, self-similar plumes. They 
attributed this partly to the difficulty in measuring concentrations accurately at significant distances 
from the source due to the relatively fast (x – x0)-5/3 decay rate of scalars in plumes. They also noted 
that flow velocities in plumes are relatively low compared to jets, and so greater care had to be 
taken in the far field to prevent small external disturbances affecting measurements. 

This  matter  was  disputed  by  Shabbir  & George  [11] and  George   [40] who  noted  that  plume 
measurements are strongly influenced by ambient thermal stratification. Since stratification is more 
difficult to control the further ones goes from the source, this could potentially affect measurements 
taken at larger axial distances, such as those taken by Dai et al. [10][37][38][39] at distances of z/D 
up to 151. In a neutral environment, conservation of energy implies conservation of buoyancy [1]. 
One means to check whether ambient thermal stratification has adversely affected measurements is 
therefore to ensure that buoyancy is conserved. Shabbir & George [11] carefully determined the rate 
of buoyancy added at the source and found that in their measurements, buoyancy was conserved to 
within 10%.

The other columns in Table 1a provide details of the shape of the self-similar profiles of the scalar 
within  the  fully-developed  region.  The  radial  mean  scalar  profiles  were  approximated  using  a 
Gaussian profile:

F  r
x−x0 =F 0 exp[−k f

2 r
x−x0 

2] (7)

To obtain self-similar profiles, the mean properties were then scaled using the following formula, 
from List [6]:

f = Fr0

4 
2 /3

 
0

 x−x0

D 
−5 /3

F  r
x−x0  (8)

The final two columns in Table 1a provide centreline values of the dimensionless mean scalar, F(0), 
and RMS scalar fluctuations,   f ' / f c ,  for the various experiments.  The sixth column provides 
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details  of the spreading rate of the plume, denoted  l f /  x−x0  ,  where  lf is the plume radius as 
defined by the point where f  falls to e-1 of its centreline value. 

The  experiments  undertaken  by  Dai  et  al. [10][37][38][39] indicated  that  self-similar  round 
turbulent plumes were up to 40% narrower and had mean centreline scalar values and streamwise 
velocities that were up to 30% larger than were previously thought. This finding was confirmed by 
a later  study by the same group using the same experimental  arrangements  [41].  The paper by 
Brescianini & Delichatsios  [42] provides cross-plots of both  Dai et al. [10] and George et al. [3] 
velocity profiles. These show that on a graph of velocity,  U, versus radial location  r/(x –  x0), the 
experimental profile from George  et al. [3] is significantly flatter and wider than the more recent 
data of Dai et al. [10]. However, when plotted in dimensionless form (U/Uc versus r/r1/2) the data 
are remarkably similar. 

In 1994, Shabbir & George [11] repeated the earlier experiments of George et al. [3] with the joint 
aim of reproducing the earlier experiments under stricter laboratory conditions and investigating the 
budgets of the mean energy and momentum equations.  The peak mean values and plume half-
widths were found to be in good agreement with their earlier work (see also Heskestad  [43] for 
comparisons).  Shabbir & Taulbee  [44] recently provided further analysis  of the budgets for the 
turbulent heat flux and Reynolds stress transport equations to help with the development of new 
second-moment  closure  models.  They  found  that  the  “local  equilibrium  assumption”  (where 
production and dissipation are in balance) provided a reasonable approximation for the turbulent 
heat  flux  transport  equation  but  that  convection  and  diffusion  terms  were  significant  in  the 
Reynolds  stress  budgets.  This  finding  has  implications  for  the  development  of  algebraic  stress 
models (see later). A priori assessment of simple pressure-correlation models for the turbulent heat 
flux and Reynolds stress equations were also presented in [44]. They found that the measured axial 
heat  flux,  uT ,  was  generally  several  times  larger  than  that  modelled  by a  simple  Boussinesq 
gradient diffusion form and proposed an algebraic stress model to improve its prediction.

A recent  experimental  study by Yao & Marshall  [45] used Planar  Laser  Induced Fluorescence 
(PLIF)  to  investigate  turbulent  buoyant  salt-water  plumes.  Results  were  given  for  the  fully-
developed region extending approximately from 6 < (x - x0)/D < 30, where the mean plume radius 
was found to increase linearly and the dimensionless density difference decay according to the -5/3 
law. Velocity measurements were not made. Dimensionless RMS concentration fluctuations varied 
between 0.35 and 0.45, in fair agreement with the earlier experiments reported in Table 1a.  The 
purpose of Yao & Marshall's measurements was to simulate fire plumes. However, as they noted, 
care should be taken in interpreting data from salt-water experiments since the Schmidt number in 
liquid plumes is nearly three orders of magnitude larger than the corresponding value in gaseous 
plumes. The effect of this higher Schmidt number is to inhibit scalar mixing at small scales and near 
walls, where molecular diffusion is significant. 

The review paper by Heskestad  [43], discussed briefly the variability in reported measured peak 
values  and spreading  rates  in  axisymmetric  plume experiments,  shown in Table  2.  Heskestad's 
earlier fire plume measurements [22], were in reasonably good agreement with the measurements of 
George et al. [3]. For the spreading rate of the plume, Heskestad [43] commented that the George et  
al. [3] and Shabbir & George [11] experiments were considered the most reliable. Chen & Rodi [1] 
also considered the work of George et al. [3] to be the most consistent of their reviewed data.
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Table 2 Summary of experimental plume characteristics from Heskestad [43]

Study Centreline 
velocity, U0

Half-width based 
on velocity, bU

Centreline 
temperature 

difference, ΔT0

Half-width based 
on temperature, bΔT

Heskestad [22] 3.4 - 9.1 0.12

George et al. [3] 3.4 1.08 9.1 0.104

Shabbir & George [11] 3.4 1.07 9.4 0.10

Papanicolaou & List [9] 3.9 - 14.3 0.09

Dai et al. [10] - - 12.6 0.08

CFD Studies

One of the most comprehensive early CFD studies of buoyant plumes was undertaken by Hossain & 
Rodi  [8].  They  examined  the  performance  of  an  algebraic  stress  and  heat  flux  model  in 
axisymmetric  and  plane  plumes,  buoyant  jets  and  pure  jets.  Their  model  was  based  on  the 
differential stress model of Gibson & Launder [46] which is described in some detail in their paper. 
They showed how the differential model was simplified to algebraic expressions by neglecting the 
convective and diffusive fluxes, effectively assuming that the flow only evolves slowly (i.e. local 
equilibrium).  The validity of this assumption in buoyant plumes was examined subsequently by 
Shabbir & Taulbee [33]. The proposed algebraic model shared some features with the standard k – ε 
model  but used modified expressions for the stresses and heat  fluxes and a more  sophisticated 
diffusion term. An important feature of the model was that the coefficients appearing in the eddy 
viscosity and diffusivity were functions of buoyancy parameters (not the case with the standard k – 
ε model). The model also incorporated an empirical correction for the round-jet/plane-jet anomaly 
first proposed by Rodi [47]. The buoyancy term in the modelled ε-equation was empirical in nature 
and Hossain  & Rodi  [8] acknowledged  that  it  would not  be  well  suited  to  more  general  flow 
situations. To simulate the axisymmetric plume, they used a parabolic method where the numerical 
grid adjusted itself to the increase in plume width using a dimensionless stream function as a lateral 
coordinate.  Both  the  limiting  cases  of  pure  jets  and  pure  plumes  were  well  predicted  by  the 
algebraic model as was the transition between jet and plume-behaviour in buoyant jets. 

A number of more recent CFD simulations of axisymmetric buoyant plumes have also used variants 
of the standard k – ε turbulence model. Nam & Bill [48] performed simulations of pool fires using 
the commercial code PHOENICS and modified the standard Launder & Spalding  [49] model by 
changing, arbitrarily,  the values of the effective Prandtl number,  σeff, and the model constant,  cμ, 
from 1.0 and 0.09 to 0.614 and 0.109, respectively, to obtain improved results in buoyant plumes. 
They then  used  their  modified  model  to  simulate  buoyant  ceiling  jets  and  found results  to  be 
slightly better than with the standard model. The consequences of changing these constants on the 
model's performance in other flows was not explored.

Hara & Kato  [50] used a standard  k – ε model and presented results using different meshes with 
various modifications to the cε3 constant in the buoyancy production term of the ε-equation. They 
compared  results  to  the  experiments  of  Yokoi  [51],  which  involved  releases  of  buoyant  fluid 
through a circular orifice, but modelled this as a square orifice to enable the use of hexahedral 
Cartesian grids. Results were found to be grid-sensitive and recommendations regarding resolution 
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were provided. Differences in the cε3 constant were found to have no effect on results.

The study by Brescianini & Delichatsios [42] also examined the k – ε model in combination with 
different  sub-models  for  the  turbulence  production  due  to  buoyancy,  including  the  Boussinesq 
Simple  Gradient  Diffusion Hypothesis  (SGDH), the Generalized Gradient  Diffusion Hypothesis 
(GGDH) of Daly & Harlow [52] and the algebraic model of Hossain & Rodi [8]. The SGDH and 
GGDH models are described in detail later in this UFR. They compared CFD predictions mainly to 
the  experimental  measurements  of  Dai  et  al. [41] and  examined  both  axisymmetric  and  plane 
plumes. None of the model variants were found to capture all the flow details of both axisymmetric 
and plane plumes and no firm conclusions were drawn regarding the best  turbulence buoyancy 
production model. The GGDH model was found to give improved predictions of the streamwise 
mass  flux  compared  to  SGDH.  The  Hossain  & Rodi  [8] model  was  also  found sometimes  to 
produce  better  results  than  GGDH.  However,  Brescianini  &  Delichatsios  [42] noted  that  the 
Hossain  &  Rodi  [8] model  was  sensitive  to  the  model  constants  and  was  more  complex  to 
implement. They concluded that given the overall satisfactory performance of the  k – ε model in 
predicting the mean-flow quantities, there was no real advantage to be gained in using a higher-
order closure model to study buoyant plumes.

Yan & Holmstedt [53] compared two k – ε model variants against the George et al. [3] experiments 
for the axisymmetric plume. The first variant was a standard  k – ε model with SGDH and the 
second involved an additional  algebraic  stress  model  for  the production term in the  k-equation 
combined with GGDH for the production due to buoyancy. The additional algebraic stress model 
was based on a second-moment-closure correction devised by Davidson  [54]. The  standard  k – ε 
model with SGDH was found to underpredict the spreading rate of the plume, producing overly-
high temperatures and velocities in the core. Their modified model produced better results for the 
axisymmetric plume. They went on to examine buoyant diffusion flames using their new approach. 

Malin & Younis [55] also compared CFD predictions to the George et al. [3] data but used second-
moment-closure models and the parabolic PHOENICS solver. The objective of Malin & Younis's 
study was to extend the second-moment closure model of Gibson & Younis [56][57][58] to buoyant 
flows and examine its performance in free turbulent jets and plumes. The model produced good 
predictions of the mean axial velocity and temperature profiles and was able to capture, at least 
qualitatively, the anisotropy in the Reynolds stresses.

Van Maele & Merci  [2] recently examined both an axisymmetric and a plane buoyant wall plume 
using SGDH and GGDH variants of the standard k – ε model and a realizable k – ε model with the 
commercial  code,  Fluent.  The  SGDH  source  term  was  shown  to  have  little  effect  in  the 
axisymmetric plume case, and consequently the turbulent kinetic energy was underpredicted and the 
centreline velocity and temperature were overpredicted. The GGDH model was found to perform 
well with either of the two  k – ε  model variants. For the axisymmetric plume case, results were 
compared to the experimental data of George et al. [3].

Finally,  Craft  et  al. [59] mentioned  briefly  the  results  for  the  buoyant  plume  in  discussing 
developments  of their  Two-Component  Limit  (TCL) second-moment-closure model.  Predictions 
using the TCL model were compared to the experiments of Cresswell et al. [60] and results from a 
“basic” second-moment-closure model. The spreading rate of the self-similar buoyant plume was 
found to be better predicted using the more sophisticated TCL model. 
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Parabolic Solvers
 
A number of the early CFD studies discussed above used a parabolic or space-marching solution 
method.  This  involves  the  solution  of  simplified  boundary-layer-type  transport  equations. 
Comparisons of model predictions using parabolic and elliptic codes for jets and plumes are given 
El Baz et al. [61], Magi et al. [62] and Haroutunian & Launder [63]. In axisymmetric free-jets, El 
Baz et al. [61] and Magi et al. [62] found that the use of an elliptic instead of a parabolic approach 
resulted in differences in the predicted spreading rates of 10% or more. In axisymmetric buoyant 
plumes, Haroutunian & Launder [63] found that spreading rates differed by only a few percent, but 
second  moments  differed  by  more  than  30% in  some  cases.  Given  the  capabilities  of  current 
desktop computers, there is no longer a need on the grounds of grid-resolution and computing time 
to use a parabolic solver in far-field plume simulations. However, care must be taken when using 
elliptic  codes to ensure that  the solution is  not restricted or influenced by the side entrainment 
boundaries.

 1.2.2 Studies on which this UFR review will be based
The work of Van Maele & Merci  [2] has been chosen as providing the most appropriate currently 
available information on which comparisons have been made between CFD and experiment. Their 
study represents a good match for what is required for this UFR. They examined SGDH and GGDH 
variants of the both the standard k – ε model and a realizable k – ε model using the commercial CFD 
software,  Fluent.  The  paper  provides  a  thorough  description  of  methodology  used,  including 
description of the numerical methods and a grid-dependence study. Both axisymmetric and plane 
wall  plumes  were examined,  the former  using  the experimental  data  of  George  et  al.  [3].  The 
methodology used in their studies is described below.
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 2 Test Case

 2.1 Brief Description of the Study Test Case
• Heated air is discharged through a circular orifice into ambient air that is at rest.
• The plume source temperature is 300°C and the ambient air is 29°C.
• The source has diameter, D = 6.35 cm.
• The hot air  is discharged at  a velocity of  U0 = 67 cm/s  with a approximately a top-hat 

profile.
• Temperature and velocity fluctuations at the inlet are less than 0.1%.
• George et al. [3] presented experimentally measured profiles of both mean and fluctuating 

components of the temperature and axial velocity in the self-similar region at  x/D = 8, 12 
and 16 above the source. 

 2.2 Test Case Experiments

The experiments used in this UFR are those of George et al. [3] which were conducted in 1974 at 
the Factory Mutual Research Corporation and were subsequently repeated by Shabbir & George 
[34] at the University of Buffalo.

The general arrangement is shown in Figure 4. Compressed air is passed through a set of heaters 
and porous mesh screens before exiting through a nozzle into the enclosure. The nozzle is stated as 
a 15:1 contraction in [3], a 12:1 contraction in [34] and appears to be different again in a drawing of 
the arrangement in  [3] (see Figure 5). It resulted in a velocity profile through the exit which was 
uniform to within 2% outside the wall boundary layer. The velocity and temperature fluctuations at 
the exit were measured to be very low, less than 0.1% in [3] and 0.5% in [34]. The temperature of 
the source was 300°C and the ambient environment 29°C. Both were controlled to an accuracy of 
within 1°C. The discharge velocity was 67 cm/s, as calculated from the measured heat flux. These 
source conditions corresponded to Reynolds number,  Re0 = 870, and densimetric Froude number, 
Fr0 = 1.233. There was no evidence of laminar flow behaviour at a position two inlet diameters 
downstream from the source. The effective origin of the plume,  x0, was found to be at the same 
location as the exit (see [3] for details of how this was determined).

The screen enclosure around the plume exit was 2.44 × 2.44 metres in cross-section and 2.44 metres 
high (there is, presumably, an error in [3] which suggests that the enclosure is 2.44 × 2.44 × 2.44 
mm).  In the later  Shabbir  & George experiments,  a  2 × 2 × 5 metre  enclosure was used.  The 
purpose of the screens was to minimize the effect of cross-draughts and other disturbances affecting 
the flow. Two-wire probes were used by George et al. [3] to record velocities and temperature.  

3 The densimetric Froude number is calculated here from the source and ambient temperatures, the exit velocity and 
source  diameter  given  by  George  et  al.  [3],  using  Equation  (1).  However,  George  et  al.  [3] stated  that  the 
densimetric Froude number was 1.4. It is unclear how they determined this value. Using the approach taken by Chen 
& Rodi  [1]  in  which  the  source  density instead of  the ambient  density  is  used  to  make the density difference 
dimensionless, and Froude number is defined using the square of the expression given in Equation (1), this gives a 
Froude number of 0.80.
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Figure 5 Schematic of the George et al. [3] experiments, from Shabbir & George [11].

Figure 6 Schematic of the plume generator used in the experiments, from George et al. [3].
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George et al. [3] reported that measurement errors, stemming from directional ambiguity of the hot 
wire and its thermal inertia, were around 3% for the velocity and lower for other mean and RMS 
values. The frequency response of the hot wires was estimated to be around 300 Hz compared to the 
frequency of the energy-containing eddies at around 50 Hz and the Kolmogorov microscale at 1 
Khz. It was noted that measurement errors were likely to be higher on the outer edge of the plume 
were the velocity fluctuations were higher.

In their  review of plume experiments,  Chen & Rodi  [1] noted that the data from George  et al. 
differed significantly from earlier measurements by Rouse et al. [64]. However, they considered it 
to be more reliable due to its use of more sophisticated instrumentation. George [40], describes an 
experimental  program at the University of Buffalo that was set up following publication of the 
original George et al. [3] paper to investigate possible causes of differences in experimental plume 
results. Possible sources of errors discussed included:

• ambient thermal stratification
• the size of the enclosure
• the use of  porous  screens  used to  minimise  disturbances  from the  far-field  affected  the 

plume source.
• hot wire measurement errors

The most significant concern was ambient thermal stratification.  One of the  features of buoyant 
plumes in neutral environments is that the integral of the buoyancy across the whole cross-section 
of the plume, F, should remain constant and equal to the buoyancy added at the source, F0. George 
[40] discussed how thermal stratification involving small  temperature differences of the order of 
1°C across a 3 metre vertical span would be sufficient to cause F to decrease to only 50% of the 
source value. This would be likely to cause differences in measured temperature and velocity plume 
profiles. 

In the initial experiments of George et al. [3], the thermal stratification was not strictly controlled. 
However, results from later experiments published in the PhD thesis of Shabbir [32] (reproduced in 
[34] and [40]), which conserved buoyancy to within 10%,  are in good agreement with  the earlier 
results from George et al. [3]. This suggests that, perhaps fortunately, ambient thermal stratification 
did not contaminate the George et al. [3] results significantly. 

A summary of the original results from George et al. [3] and those reproduced later by Shabbir & 
George [11] is presented in Table 3. Also shown are the recommended values from Chen & Rodi's 
review  [1] and other studies. The parameters given in Table 3 relate to the following empirical 
formulae for the mean vertical velocity:

W =F 0
−1/3 z−1 /3 f w (9)

 and effective buoyancy acceleration:

g  


=F0
2 /3 z−5 /3 f T (10)

where fw and fT are Gaussian functions: 

f w=Aw exp[−Bw r
x 

2] f T=AT exp[−BT r
x 

2] (11)

The parameters,  lΔT/2 and  lw/2 are the dimensionless  half-widths of the plume,  as defined by the 
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location where the normalized buoyancy or mean velocity falls to half its centreline value.  The 
RMS temperature  and axial  velocity  fluctuations  normalized  by the centreline  mean values  are 
denoted, t 2 1 /2

/T c  and w 2 1/2
/W c , respectively.

As noted earlier,  Dai  et  al. [10][37][38][39][41] disputed the accuracy of  the  George  et  al. [3] 
experiments and suggested that they had made measurements too near the source, before the plume 
had reach a fully-developed state. Their arguments are disregarded by Shabbir & George [11][34].

Table 3 Summary of mean flow parameters and turbulence intensities, from Shabbir & George [11]

 2.3 CFD Methods

 2.4 Van Maele & Merci: Description of CFD Work

 2.4.1 Numerical Methods
Van Maele & Merci [2] used the finite-volume-based commercial CFD code, Fluent4, to simulate 
the plume experiments of George et al.  [3]. For the discretization of the convective terms in the 
momentum, turbulence and energy equations a second-order upwind scheme was used. Diffusion 
terms were discretized using second-order central differences and the SIMPLE algorithm was used 
for pressure-velocity coupling. The flow was treated as axisymmetric and elliptic calculations were 
performed used a Cartesian grid arrangement.

The low-Mach-number  form of  the  Favre-averaged Navier-Stokes  equations  were used.  In  this 
weakly-compressible  approach,  the density is  treated as only a function of temperature and not 
pressure. Pressure only affects the flow field through the pressure-gradient term in the momentum 
equations.  The  ideal  gas  law is  used to  link the  mean  density,   ,  to  mean temperature,  T as 
follows:

 p∗= RT (12)

where  p∗  is  taken  as  constant  and  equal  to  the  atmospheric  pressure.  The  low-Mach-number 
approximation implies that the effect of the mean kinetic energy and the work done by viscous 
stresses and pressure are negligible in the energy equation. 

4 http://www.fluent.com

18



 2.4.2 Turbulence Modelling
Two turbulence models were used by Van Maele & Merci [2]: the standard k – ε model of Jones & 
Launder  [65] and the realizable  k –  ε model of Shih  et al.  [66]. In the former model,  the eddy 
viscosity is given by:

=c
k 2


(13)

where cμ  is a constant equal to 0.09 and the standard k and ε equations are written:

∂
∂ x j

U j k = ∂
∂ x j [


 k  ∂ k

∂ x j ]P kG− (14)

∂
∂ x j

U j  = ∂
∂ x j [


  ∂

∂ x j ]c1 Pk

k
−c 2 

2

k
S  B

(15)

where cε1 = 1.44, cε2 = 1.92, σk = 1.0, σε = 1.3 and Pk is the production term due to mean shear. The 
terms G and SεB  are source terms related to the influence of buoyancy on the k and ε equations. The 
treatment of these terms is discussed below. 

The Shih  et al. [66] model involves two changes to standard  k –  ε model.  Firstly,  cμ is made a 
function of strain and vorticity invariants to ensure that the model always returns positive normal 
Reynolds stresses and satisfies the Schwarz inequality for the turbulent shear stresses. The function 
form of cμ is given by:

c=A0 As U ∗ k
 

−1

(16)

where:

U ∗= S ij S ijij ij   S ij=
1
2 ∂ U i

∂ x j


∂U j

∂ x i  ij=
1
2 ∂U i

∂ x j
−

∂U j

∂ x i
 (17)

A s= 6cos =1
3

arccos 6 W      W =23/2 S ij S jk S ki

S3  S=2 S ij S ij      (18)

and A0 is a constant equal to 4.04.

Secondly, a different ε-equation is used in to resolve the problem of the round-jet/plane-jet anomaly 
(see Pope [67]):

∂
∂ x j

U j = ∂
∂ x j [


  ∂ 

∂ x j ]c 1 S

k

−c2 
2

k
S  B (19)

c1=max [0.43,/5 ]  =S k / (20)

where S is the strain-rate invariant as before,  cε2 = 1.9, σk = 1.0 and σε = 1.3.

The Shih et al. [66] model was developed for high Reynolds number turbulent flows and therefore a 
zonal or wall-function approach must be used to bridge the viscous sub-layer near walls. Compared 
to the standard k – ε model, it has been shown to produce improved behaviour in a number of free 
shear  flows,  boundary-layer  flows  and  a  backward-facing  step  flow  [66].  One  of  the  major 
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weaknesses of the standard  k –  ε model is that it produces too much turbulent kinetic energy at 
stagnation points  [68]. The Shih  et al. model should in principle suffer less from this weakness 
since  the  functional  form  of  cμ  should  reduce  the  over-production  of  k.  However,  its  overall 
performance in stagnating flows will depend on the type of wall model used. 

Production due to Buoyancy, G

The term G in the k-equation relates to the influence of buoyancy on the turbulent kinetic energy, 
and is given by:

G=u j g j (21)

where  gj is the gravitational acceleration vector. In stably stratified flows, where the temperature 
increases with height,  G is negative. Conversely,  in unstably stratified flows, where temperature 
decreases  with  height,  G is  positive  and  acts  to  increase  k.  The  unknown  density-velocity 
correlation, u j , must be modelled. The most common approximation of this term is the so-called 
Boussinesq Simple Gradient Diffusion Hypothesis (SGDH):

u j=−
t

t

1


∂
∂ x j

(22)

The production due to buoyancy using SGDH is then as follows:

G=−
t

t

1
2

∂
∂ x j

∞ g j
 (23)

In their paper, Van Maele & Merci  [2] erroneously included an additional pressure-gradient term 
∂ P /∂ x j   in Equation (23) related to the pressure-work rather than buoyancy (see Wilcox [69]). 
Since the term is negligible in incompressible flows, such as the buoyant plumes considered here, it 
has therefore been ignored. The ratio of the reference density to the mean density, ∞ / , appears in 
Equation  (23)  due  to  the  use  of  a  non-Boussinesq  approach  and  Favre-averaging,  which  are 
discussed later. Van Maele & Merci  [2] assumed that σt  was constant and equal to 0.85. 

Instead of writing the buoyancy production in terms of the density-velocity correlation,  u j , the 
equation can be written in terms of the heat flux, u j t ' :

u j t '=−
t

t

∂T
∂ x j

(24)

and the G term is then written:

G=−
t

t

∂T
∂ x j

g j
(25)

where  t '  is  the  temperature  fluctuation,  T is  the  mean  temperature  and  β is  the  volumetric 
expansion coefficient,   =−1/∂/∂T .  Other equivalent expressions can also be formulated 
using the ideal  gas  law and the assumption  that  density is  only a  function  of  temperature,  not 
pressure (the low-Mach-number approximation). The conversion from mean density to temperature 
gradients is then as follows:
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∂
∂ x j

= ∂
∂T

∂T
∂ x j

=
−P∗

R T 2
∂ T
∂ x j

= 
T

∂T
∂ x j

(26)

The SGDH model predicts zero density-velocity correlation or heat flux components ( u j=0  or 
u j t '=0 )  in  situations  were  the  density  or  temperature  gradients  are  zero  in  that  direction. 
However, as Ince & Launder [70] noted, in a simple shear flow in which there are only cross-stream 
temperature gradients, the heat flux in the streamwise direction actually exceeds that in the cross-
stream direction. This shortcoming of the SGDH model was confirmed by the analysis of Shabbir & 
Taulbee  [33], who showed that the model significantly underestimates the magnitude of the heat 
flux in vertical buoyant plumes. The underprediction of u j  or u j t '  by the SGDH model leads to 
an overly-small production term,  G, and hence a turbulent kinetic energy,  k, which is too small, 
producing too little mixing in the modelled plume. The study by Yan & Holmstedt  [53] provides a 
clear example of how the k – ε model with SGDH produces buoyant plumes which are too narrow 
and with overly high temperatures and velocities in the core of the flow. 

Van Maele & Merci [2] examined a different model for G based on the the Generalized-Gradient 
Diffusion  Hypothesis  (GGDH)  of  Daly  & Harlow  [52].  This  was  first  used  in  the  context  of 
practical CFD calculations with the k – ε model by Ince & Launder [70], and is written as follows:

u j=−3
2

c

t

k
 u j uk

∂
∂ xk  (27)

which Van Maele & Merci [2] expressed as follows:

G=−3
2

t

 t 
2 k u j uk

∂
∂ xk ∞ g j

(28)

again with σt  = 0.85. As previously, Van Maele & Merci [2] included a pressure-gradient term in 
the  above equation  related  to  pressure-work  but  this  can  effectively  be  ignored  in  the  present 
application. The advantage of the GGDH approach is that transverse density gradients affect the 
production term. 

In their plume simulations, Van Maele & Merci  [2] used a slightly modified form of the above 
relation.  They replaced  the  normal  stress  in  the  streamwise  (vertical)  direction,  ww ,  with  the 
turbulent  kinetic  energy,  k.  They  justified  this  on  the  basis  that  the  k –  ε model  gives  poor 
predictions of  normal stresses in plumes. Experimental measurements indicate that the streamwise 
normal stress is approximately twice the magnitude of the transverse components (i.e. ww≈2uu ) 
whereas the  k –  ε model predicts  them to be roughly equal. Since  k can be approximated from 

k≈ 1
2

ww2uu  and the k – ε model predicts ww≈uu , they suggest that it is more appropriate 

to use  k rather than  ww , to artificially increase the stress to a more realistic value. This ad-hoc 
correction may not be appropriate  in more complex flows where the gravitational  vector is not 
aligned to the Cartesian axes.

A simplification frequently made to the buoyancy treatments described above is to assume that the 
mean density is  equal  to  the reference  density,  ≈∞ ,  an approach known as  the Boussinesq 
approximation5. For the SGDH written in terms of temperature gradients, this gives:

5 A more complete definition of the Boussinesq approximation is that the variation in fluid properties due to changes 
in temperature or pressure are assumed to be zero (i.e. not only constant density, but constant molecular viscosity, 
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G=−
t

t

∂T
∂ x j

g j
(29)

Van Maele & Merci [2] examined the effect of this simplification on the prediction of the George et  
al. [3] buoyant plume experiments .

Buoyancy Source Term in the  ε-Equation, SεB

The buoyancy source term, SεB, in the  ε-equation is given by:

S B=c1 1−c3  
k

G (30)

Unlike other model constants in the k – ε model, there is still some controversy over the best value 
or  formula  for  cε3.  Different  approaches  have  been  proposed  by  different  researchers,  partly 
depending on whether the flows are horizontal or vertical and whether there is stable or unstable 
stratification.  For  a  review of  the  performance  of  various  models,  see  Rodi  [71],  Markatos  et  
al. [72] or Worthy et al. [73]. In their paper, Van Maele & Merci  [2] provided a summary of the 
values proposed  previously in 20 published papers and, based on analysis of these studies, used a 
constant value for cε3 of 0.8.

Favre-Averaging

Throughout their paper, Van Maele & Merci  [2] refer to Favre-averaged mean velocity, enthalpy 
and temperature ( U ,  h  and T ) instead of the perhaps more familiar Reynolds-averaged values, 
(U, H and T).  The Favre average of a variable  , denoted   is calculated from:

=
 (31)

where  overbars  represent  long time  or  ensemble  averages  in  the  traditional  Reynolds-averaged 
sense. The turbulent stresses appearing in the Favre-averaged Navier-Stokes equations are:

−ui u j=2t
S ij−

2
3

k  ij (32)

This is the same as the usual Reynolds-averaged stress except that the strain-rate tensor, S ij  is now 
Favre-averaged. The Favre-averaged strain-rate is calculated from:

S ij=
1
2 ∂U i

∂ x j


∂U j

∂ x i  (33)

where  the  Favre-averaged  mean  velocity,  U i ,  is  the  parameter  solved  for  in  the  momentum 

thermal conductivity etc.).  In  Van Maele & Merci's  work, although they stated that  they tested  the Boussinesq 
approximation, in fact their simplifications only consisted of assuming  ≈∞  in the production term,  G (Van 
Maele, private communication, 2007). It is unclear whether variation of the density in the other remaining terms, or 
variation of the viscosity, thermal conductivity etc., affected the results significantly.
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equations. 

Even though they solved Favre-averaged transport equations, Van Maele & Merci modelled the 
buoyancy production term,  G, using the Reynolds-averaged stress, not the Favre-averaged stress. 
Formally, one can expand the Reynolds-averaged stress as follows [74]:

u i u j=u i u j−
ui u j


−

ui u j

2 (34)

However, it is often assumed that the last two terms in this expansion can be neglected, in which 
case u i u j≈ui u j . This was the approach adopted by Van Maele & Merci [2]. 

If one replaces all the Favre-averaged quantities in Van Maele & Merci's equations with Reynolds-
averaged  quantities  (i.e.  substitute  ~  symbols  with  –  ),  their  equations  appear  identical  to  the 
incompressible Reynolds-averaged Navier-Stokes equations. In terms of the actual coding of the 
model, the mean quantities in the flow equations can therefore be interpreted as either Reynolds-
averaged or Favre-averaged variables. For this reason, the transport equations have been written in 
this UFR without the Favre-averaged (~) symbols.

In the majority of the other papers reviewed for this UFR, the transport equations are stated as being 
Reynolds averaged. Hossain & Rodi [8] noted that correlations between fluctuating velocities and 
fluctuating  density  are  important  in  combustion  applications  but  are  small  in  comparison  to 
correlations between velocity fluctuations in simple buoyant plumes.  Brescianini & Delichatsios 
[42] also  commented  that  “depending  on  certain  assumptions,  the  mean  quantities  ...  can  be 
interpreted as either time-averaged or Favre-averaged variables. The differences between these two 
types  of  averages  is  small  when  compared  to  the  experimental  uncertainties  for  the  plumes 
examined in this study, and as a result, no large distinction is made between the two forms”. In the 
experiments  of  O'Hern  et  al.  [75],  reviewed  for  the  companion  UFR  on  unsteady  plumes, 
simultaneous  measurements were made of velocities and mass fraction. This enabled both Favre-
averaged  and   Reynolds-averaged  quantities  to  be  derived.  O'Hern  et  al.  [75] found  that  the 
difference between Favre- and Reynolds-averaged velocities and second-order turbulent statistics 
was  less  than  the  uncertainty  in  the  data  throughout  the  flow field.  Further  details  on  Favre-
averaging can be found in Chassaing et al. [74].

 2.4.3 Boundary Conditions
Van Maele & Merci  [2] modelled the plume source using a diameter,  D0 , of 6.35 cm, an inlet 
temperature of 573 K, an axial velocity of 0.67 m/s, and a turbulence intensity of 0.5% . To define a 
value for ε at the inlet, they assumed a turbulence length scale  k 3 /2/  of 4.5 mm, equivalent to 
D0/15.  Around the source, on the radial plane, a wall boundary was specified. The domain was 
axisymmetric, extending 1 metre in the radial direction and 3 metres in the axial direction. On the 
side and top boundaries, static pressure conditions were specified to allow the flow into or out of 
the computational domain. Ambient air entrained through the open boundaries was assumed to have 
a temperature of 302 K, a turbulent kinetic energy of 10-6  m2/s2 and a dissipation rate of 10-9 m2/s3. 
The atmospheric pressure was taken as 101 325 Pa. No tests were undertaken to examine whether 
the location or conditions of the entrainment boundaries affected the flow solution.
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 2.4.4 Grid Used
Van Maele & Merci [2] used a 40 × 100 node rectangular grid in the (radial  ×  axial) directions. 
There were 10 equispaced cells across the source and 30 across the adjacent wall region. The grid 
was stretched in both the axial and radial directions from the source.

To ensure that results were grid-independent, Van Maele & Merci performed simulations using 80 
× 200 and 160 × 400 node grids. The predicted spreading rates and centreline values on the coarsest 
and finest grids differed by less than 2%. The 40 × 100 grid was therefore considered to provide 
adequately grid-independent results.

 2.4.5 Discussion
The CFD methodology employed by Van Maele & Merci appears to have been performed to a high 
standard.  Details  of  the modelling  and numerical  techniques  used in  their  work were recorded 
clearly in their paper.

They did not show a plot of the grid that was used, however this may have been because it would 
not have been well reproduced in print and, in any case, the mesh was a simple Cartesian grid 
arrangement and is adequately described in the text. 

The sensitivity of results to the turbulence length scale at the inlet, and to the level of turbulence in 
the entrained air was not explored, although reasonable approximations appear to have been used 
for these values. Likewise, the sensitivity to the size of the domain and the entrainment boundaries 
was not explored.
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 3 Evaluation

 3.1 Comparison of CFD Calculations with Experiments

Van Maele & Merci  [2] presented the results  from a number of simulations  that  examined the 
effects  of different combinations  of models and approximations.  The Boussinesq approximation 
≈∞  was shown to have no affect on the model predictions when the SGDH model was used. 
Indeed, the SGDH source term itself  had a negligible  influence on the results.  When using the 
GGDH source term, however, the Boussinesq approximation had an effect on the results nearest to 
the plume exit  at  z/D = 12,  where the assumption of  ≈∞  caused an increase in  the peak 
velocity of around 5%.  By assuming that the mean density was the same as the reference density, 
the buoyancy source term became smaller and so the turbulent kinetic energy and hence the eddy 
viscosity  were  also  smaller.  As  a  consequence,  there  was  less  mixing,  the  centreline  velocity 
increased and the spreading rate  decreased.  The effect  was  significant  where the mean density 
differed most from the reference density, nearest to the plume source, but was negligible in the far 
field.  These  results  suggest  that  the  Boussinesq  approximation  can  be  used  in  the  far  field  of 
buoyant plumes where density differences are small. However, if the CFD domain extends from the 
far  field  to  the  source  of  buoyancy,  such  as  a  fire  or  strongly  heated  surface  where  density 
differences are appreciable, then the Boussinesq approximation should not be used.

It  should  also  be  remembered  that  Van  Maele  &  Merci's  interpretation  of  the  'Boussineq 
approximation'  only involved setting  ≈∞  in the production term,  G. The density and other 
flow properties (molecular viscosity,  specific heat etc.)  still  varied as a function of temperature 
elsewhere in the transport equations. 

Van Maele & Merci examined the effects of SGDH versus GGDH and the effect of switching on 
and off both the production due to buoyancy term, G, and the source term in the ε-equation, SεB, on 
the standard and realizable k – ε models. Table 4 summarizes the cases tested. In the relevant cases, 
they used the full buoyancy source term G rather than any truncated form of the equation. The ε-
equations were different for standard and realizable  models,  but in both cases, where used,  the 
buoyancy-related source term was given by: 

S B=c1 1−c3  
k

G  with  c3=0.8 (35)

The  results were compared to the experimental data of George  et al. [3] and the correlations of 
Shabbir & George [11], which were given by:

Axial velocity: W F 0
−1/3 z1/3=3.4exp −582  (36)

Buoyancy: g T F0
−2 /3 z5 /3=9.4exp −682 (37)

where  W is the mean axial momentum, ΔT is the difference between the local mean and ambient 
temperatures,  z is the vertical distance from the source,  η =  r/z is the similarity variable (r is the 
radial distance from the plume centreline), and β the thermal expansion coefficient. The buoyancy 
added at the source, F0, is found from :
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F 0=2∫0

r 0 W g 
∞

r d r (38)

and was 1.0 × 10-6 cm4/s3 in the George et al. plume [3]. To compare to these empirical correlations, 
Van Maele & Merci used their results taken at a position, z = 1.75 m, equivalent to approximately 
28 inlet diameters from the source. To demonstrate that this was sufficiently far from the source to 
produce self-similar profiles, the dimensionless velocity and temperature profiles were shown to be 
practically identical at a distance of 2.75 m.  

Profiles of the mean axial  velocity and buoyancy are compared to the empirical  correlations in 
Figures  7  and  8.  A  summary  of  the  centreline  values  and  spreading  rates  for  velocity  and 
temperature are given in Table 5. This shows the measured values from the experiments of  George 
et  al.  [3],  the  recommended  values  given  by  Chen  &  Rodi  [1] from  their  analysis  of  plume 
experiments up to 1980, the subsequent measured values from Shabbir & George [11], the RANS 
results from Van Maele & Merci [2] and Hossain & Rodi [8], and the LES results from Zhou et al. 
[28]. Three results are taken from Hossain & Rodi: Case A which is from a k – ε model without any 
buoyancy modifications, Case B which is from a k – ε model with buoyancy corrections in both k 
and ε equations, and Case C which is from Hossain & Rodi's algebraic stress/flux model.  

For the  Van Maele & Merci  [2] results,  both the standard and realizable  k – ε models without 
buoyancy  modifications  (cases  SKE and  RKE)   predicted  overly  large  centreline  velocity  and 
buoyancy values and under-predicted the spreading rates of the plume. When the SGDH source 
term was used, with or without SεB,, it had practically no effect on the results. This may have been 
partly  due  to  the  particular  choice  of  the  constant  cε3 which  made  the  contribution  from the 
buoyancy production small relatively to shear production in the ε-equation. The SKE, SKE_A and 
SKE_A* cases all returned very similar predictions to each other and RKE, RKE_A and RKE_A* 
cases behaved similarly. This was shown by Van Maele & Merci to be a consequence of the SGDH 
source term being negligible in comparison to other terms in the k and ε equations.

Table 5 shows that for the basic k – ε model without any buoyancy corrections there are significant 
differences in terms of the predicted spreading rates between the results of Van Maele & Merci [2] 
and Hossain & Rodi [8] (cases SKE and A, respectively). Van Maele & Merci's predictions of the 
spreading rates are nearly 20% higher. This may have been due to the choice of non-standard model 
constants by Hossain & Rodi [8], who used cμ = 0.109 and σt = 0.614, whilst Van Maele & Merci 
[2] used cμ = 0.09 and σt = 0.85. The results for the k – ε model with buoyancy corrections are more 
similar  (Cases  SKE_A  and  B,  respectively).  Here,  in  addition  to  the  non-standard  cμ and  σt 

constants, Hossain & Rodi  [8] used a model with constant  cε3 scaled by the Richardson number, 
which was zero in the vertical buoyant plume, such that the buoyancy production had the same 
weight as the shear production. 

Use of the GGDH model produced some improvements in the results presented by Van Maele & 
Merci [2]. For the SKE_B model, the centreline value was well-predicted but the half-width of the 
plume was overpredicted by around 20%. When the buoyancy source term in the  ε-equation was 
omitted  (case  SKE_B*)  the  axial  velocity  on  the  centreline  was  reduced  and  the  half-width 
prediction became even more inaccurate. This is consistent in the SKE_B* case with the turbulent 
kinetic energy being overpredicted due to the removal of a positive source in the ε-equation.

For the realizable model with GGDH, the mean axial velocity and buoyancy were over-predicted on 
the centreline by around 10% and 20% respectively but the half-width was reasonably close to the 
experimental  values.  Switching  off  the  buoyancy-related  source  term  in  the  ε-equation  (case 
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RKE_B*) led to a slight improvement in the results, however Van Maele & Merci noted that this 
also reduced the numerical stability of the calculation. Details of any source-term linearisation used 
to improve robustness are not provided in their paper. They recommended that the SεB term should 
be retained in the modelled equations to avoid convergence difficulties.

Van Maele & Merci commented that, overall, the GGDH variant of the realizable model (RKE_B) 
performed better than the equivalent standard k – ε model (SKE_B). However, the standard model 
gave  better  peak  mean  axial  velocity  and   buoyancy  predictions  (to  within  2%  and  10%, 
respectively, compared to 10% and 25% for the RKE_B model). It could also be argued that the 
realizable  model  only  gives  good  predictions  for  the  plume  half-width  because  the  predicted 
profiles happen to cross the experiment  profiles at  the correct  position,  the actual  shape of the 
predicted profiles are incorrect.  One could conclude,  perhaps,  that  both standard and realizable 
models predict the axisymmetric plume to a similar overall level of accuracy. Neither provides an 
exact solution and the errors for the two models are slightly different. 
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Table 4 Summary of the model variants tested by Van Maele & Merci [2]

Case Ref. Turbulence Model G SεB

SKE Standard k – ε - -

SKE_A Standard k – ε SGDH Eqn (35)

SKE_A* Standard k – ε SGDH -

SKE_B Standard k – ε GGDH Eqn (35)

SKE_B* Standard k – ε GGDH -

RKE Realizable k – ε - -

RKE_A Realizable k – ε SGDH Eqn (35)

RKE_A* Realizable k – ε SGDH -

RKE_B Realizable k – ε GGDH Eqn (35)

RKE_B* Realizable k – ε GGDH -

Figure 7 Mean axial velocity profiles expressed in terms of similarity variables, from Van Maele & 
Merci [2]. 
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Figure 8 Mean buoyancy profiles expressed in terms of similarity variables, from Van Maele & 
Merci [2].

Table 5 Centreline values and half-widths of the plume in terms of mean axial velocity and 
buoyancy.

W F 0
−1/ 3 z 1/3c lW / 2 g  TF 0

−2/3 z5 /3c lT / 2

George et al. [3] experiments 3.4 0.112 9.1 0.104

Chen & Rodi [1] 
recommendation

3.5 0.112 9.35 0.10

Shabbir & George [11] 
experiments

3.4 0.107 9.4 0.10

SKE 4.08 0.097 12.76 0.089

SKE_A 4.04 0.098 12.59 0.089

SKE_A* 4.04 0.098 12.55 0.089

SKE_B 3.32 0.132 8.48 0.119

SKE_B* 3.09 0.147 7.35 0.132

RKE 4.35 0.084 15.55 0.079

RKE_A 4.31 0.085 15.36 0.080

RKE_A* 4.3 0.085 15.31 0.080

RKE_B 3.74 0.103 11.78 0.098

RKE_B* 3.62 0.108 11.09 0.103

Hossain & Rodi [8] CFD A - 0.079 - 0.076

Hossain & Rodi [8] CFD B - 0.100 - 0.095

Hossain & Rodi [8] CFD C 3.50 0.109 8.22 0.100

Zhou et al. LES [28] - 0.111 - 0.105
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Van Maele & Merci also presented results for the streamwise and radial normal Reynolds stresses, 
ww  and uu  (not shown here). None of the models tested were capable of resolving the anisotropy 
in the normal stresses, although this is not unexpected since eddy-viscosity models like those tested 
by Van Maele & Merci were not designed to determine individual normal Reynolds stresses, only 
their sum, the turbulent kinetic energy. In the experiments, the streamwise stress was greater than 
the radial stress on the centreline, ww≈1.6uu . The linear k – ε models on the other hand all gave 
ww≈uu . Shear stresses were also not predicted very well and models overpredicted the peak value 
by up to 25%.

Plots of the k-profiles for standard and realizable models are shown in Figure 9. When normalized 
using similarity variables all of the models produced an off-axis peak in k which was not present in 
the experiments. Similar behaviour was observed in plane plumes by Yan & Holmstedt  [53]. All 
standard k – ε model variants underpredicted the centreline turbulent kinetic energy by around 15% 
whereas the realizable models were all in good agreement with the experiments. However, none of 
the model variants captured the correct shape of the k-profile. 

Figure 9 Profiles of turbulent kinetic energy, made dimensionless using similarity variables, from 
Van Maele & Merci [2].

 3.2 Comparison to Other Model Predictions

To provide some comparison  to  other  models'  performance  in  this  flow,  the  results  of  Yan & 
Holmstedt [53] are shown in Figure 10 for the George et al. [3] axisymmetric plume. The “standard 
model” they refer to is a standard k – ε model with SGDH, whilst “this model” is a modified k – ε 
model with GGDH that uses an algebraic relation for the Reynolds stresses where they appear in the 
production term, Pk. The standard model results are in good agreement with those obtained by Van 
Maele & Merci for the same case. The results obtained using their modified model appear to be 
better than those obtained by Van Maele & Merci for the standard  k – ε model with GGDH.
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Figure 10 Normalized mean velocity and buoyancy profiles from Yan & Holmstedt [53]

The predictions of mean velocity and temperature from Hossain & Rodi  [8] using an Algebraic 
Stress Model (ASM) are shown in Figure 11. As noted in Section 1.2.1, their model was derived 
from the differential stress model of Gibson & Launder [46].  Figure 11 shows that their predictions 
are in good agreement with the measurements of George et al. [3]. The predicted plume centreline 
values and half-widths using their model are shown in Table 5 (marked “Hossain & Rodi [8] CFD 
C”). These exhibit the best agreement with the measurements of George et al. [3] of all the model 
variants tested. 

 

Figure 11 Normalized mean velocity and temperature profiles from Hossain & Rodi [8]

LES predictions from Zhou et al. [28] of the mean velocity and temperature for the experiments of 
George et al. [3] are shown in Figure 12. Very good agreement is obtained although this may be 
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partly a consequence of using centreline values to make the mean parameters dimensionless. Radial 
profiles of normalized RMS axial velocity and temperature were reported to produce a similar trend 
to  that  observed in  the  experiments,  and turbulence  levels  within  the  experimental  range  [29], 
although the  centreline  dimensionless  temperature  fluctuation  was approximately  0.45,  in  good 
agreement with the measurements of Papanicolaou & List [9] and Dai et al. [10], but slightly higher 
than the value of 0.40 reported by George et al. [28]. Plume spreading rates and centreline values 
were found to be strongly sensitive to the imposed turbulent fluctuations at the inlet plane in the 
LES model. Axial velocity fluctuations with an amplitude of 20% of the mean axial velocity were 
imposed at  the inlet,  with or without  azimuthal  forcing,  to match  the predicted location  of the 
transition from laminar to turbulent flow to that observed in the experiments. In the experiments, 
however, the turbulence intensity at the inlet was reported to be approximately 0.5% [11]. 

Figure 12 Radial profiles of (a) mean axial velocity, and (b) mean temperature at four axial 
positions compared to the experiments of George et al. [3], from the LES of Zhou et al. [28].

Figure 13 shows the dimensionless mean axial velocity profiles from Brescianini & Delichatsios 
[42]. Both the experimental results of George  et al. [3] and Dai  et al. [39] are shown.  The basic 
model “ke1 Model A” is a standard k – ε model with SGDH. Other model results shown include 
“keS Model B”: a parabolic  k – ε model  based on the work of Hanjalić & Launder  [76] which 
retains both shear and normal-stress production terms, together with GGDH for the production term 
due to buoyancy; “keS Model C1”: the same  k – ε model but with the streamwise turbulent scalar 
flux  determined  using the  algebraic  model  of  Hossain  & Rodi  [8];   and “keS Model  C2”:  an 
extension of the C1 model  that  retains  streamwise  gradients of velocity  and density.  The three 
“keS” model variants all produce similar results that are in good agreement with the experiments of 
George  et al. [3].  Interestingly,  the standard  k – ε model  with SGDH produces results  in  good 
agreement with the experimental  data of Dai  et al. [39] but in poor agreement with the data of 
George  et al. [3]. Brescianini & Delichatsios  [42] commented that the results of their assessment 
depend strongly upon which set of experiments are used for comparison.
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Figure 13 Mean axial velocity profiles from Brescianini & Delichatsios [42]. The quantity U 
on the y-axis is dimensionless and equivalent to W F0

−1 /3 z1/3  in Van Maele & Merci's 
notation.

 3.3 Summary 
Van Maele & Merci's [2] results for two different linear k – ε models have been presented for the 
axisymmetric buoyant plume of George et al. [3]. Various modifications to the buoyancy treatment 
and other simplifications were tested. From this work, the following conclusions can be drawn:

● The Boussinesq approximation can be used to model the flow behaviour in far-field of buoyant 
plumes,  where density differences  are  small.  Nearer  the source of buoyancy,  where density 
differences are more appreciable, the approximation should be used with care. In Van Maele & 
Merci's [2] study it was shown to have no effect if SGDH is used, but had a noticeable effect 
with GGDH. 

● The  SGDH  buoyancy-production  term,  G,  is  calculated  using  the  streamwise  temperature 
gradient which is small in this flow and the term therefore has little effect on the mean flow 
behaviour. As a consequence, when using SGDH the turbulent kinetic energy is underpredicted, 
the plumes  have overly large centreline  velocity  and temperature  values  and do not  spread 
sufficiently quickly.

● Using GGDH instead of SGDH improves the mean flow predictions.

● Neglecting the buoyancy source term, SεB, in the ε-equation has a relatively minor effect on the 
results with GGDH but can cause numerical stability problems. It is therefore not recommended 
to neglect this term.

● Van Maele & Merci assert that the realizable  k – ε model of Shih  et al. [66] when combined 
with GGDH performs better than the standard k – ε model with GGDH. However, the overall 
improvement shown in their results is relatively modest, if present at all.

33



● Better predictions of the mean flow behaviour in the far-field of buoyant  plumes have been 
obtained using the more sophisticated  k – ε model of Yan & Holmstedt  [53] and the ASM of 
Hossain & Rodi [8].  

 4 Best Practice Advice for the UFR

 4.1 Key Physics

The  key  physics  to  be  captured  in  this  UFR  is  the  self-similar  behaviour  of  a  spreading 
axisymmetric buoyant plume.

 4.2 Numerical Modelling Issues
● The flow can be treated as axisymmetric. 

● For a grid-independent resolution of the George  et al. [3] plume, at least (40 × 100) grid 
nodes should be used in the (radial × axial) directions. At least 10 nodes should be used 
radially to resolve the plume source.

● Discretization schemes should be at least second-order accurate.

● For further advice on boundary conditions, see Section 3.4.3.

 4.3 Physical Modelling

● Use of the standard k – ε model with or without the common Standard Gradient Diffusion 
Hypothesis (SGDH) for the production term due to buoyancy,  G, will probably result in 
overprediction of the centreline mean parameters, and underprediction of the spreading rate 
of the plume.

● To obtain more accurate plume predictions with a k – ε model, use the Generalized Gradient 
Diffusion  Hypothesis  (GGDH)  instead  of  the  Standard  Gradient  Diffusion  Hypothesis 
(SGDH). More refined models have been suggested which could further improve model 
predictions, see for example Hossain & Rodi [8].

● Do not neglect the buoyancy source term in the ε-equation as this can lead to problems with 
numerical stability.

● If  you  are  considering  only  the  far-field  region  of  a  buoyant  plume,  where  density 
differences are small,  the Boussinesq approximation can be used. If, however, your flow 
domain includes the region nearer the source of buoyancy where density differences are 
appreciable, avoid using the Boussinesq approximation.
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● For cases where buoyancy is not as strong as in a plume, in the limit  of a non-buoyant 
axisymmetric jet, be aware of the limitations of the standard k – ε model. The spreading rate 
of a non-buoyant round jet is 15% lower than for a two-dimensional, plane jet. However, the 
standard k – ε model predicts the spreading rate for round jets to be 15% higher than for the 
plane jets [67].

 4.4 Application Uncertainties

In Van Maele & Merci's calculations, they substituted the streamwise normal stress in the GGDH 
expression for the production due to buoyancy, G, with the turbulent kinetic energy. They justified 
this ad-hoc modification on the basis that  that  the streamwise normal stress was underpredicted 
using a linear k – ε model and therefore using k was more appropriate. However, this modification 
may not be appropriate in more complex flows where the flow direction is not aligned to one of the 
coordinate  axes.  The  effect  on  Van Maele  & Merci's  results  would  have  been  to  increase  the 
buoyancy production term G. One could therefore expect to see a slightly less significant difference 
between SGDH and GGDH approaches without this ad-hoc modification.

Van Maele & Merci also did not report any tests that had been performed to assess the influence of 
the  entrainment  boundaries  on  the  flow  predictions.  Ideally,  simulations  should  have  been 
performed using a smaller or larger domain to demonstrate that the presence of the entrainment 
boundaries had no affect on the solution.

 4.5 Recommendations for Future Work

It  is  recommended that  further experiments  and a systematic  re-evaluation  of available  data be 
undertaken to establish with confidence the self-similar behaviour of axisymmetric buoyant plumes, 
similar to the exercise undertaken 30 years ago by Chen & Rodi [1]. Both List  [6] and Dai  et al. 
[10] and have called into question whether the measurements by George et al. [3] were carried out 
sufficiently far from the source, in the region where self-similar behaviour exists. This issue was, 
however, dismissed by Shabbir & George [11][34]. 
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