CO₂ pipeline risk assessment: Scientific knowledge gaps related to dispersion and terrain effects

Zoe Chaplin, Simon Gant, Mike Wardman, Rory Hetherington Health and Safety Executive (HSE)

Pipeline Safety Group meeting, 1 December 2022

Research - HSE funded to provide evidence which underpins its policy and regulatory activities **Guidance** - freely available to help people comply with health and safety law

© Crown Copyright HSE 2022

RESEARCH AND GUIDANCE FROM

- Background
- Atmospheric dispersion of CO₂ from pipelines
 - The Satartia incident and terrain effects
- Modelling approaches
- Experiments
- Tentative ideas for next steps

Overview

Background

- HSE is the UK Health & Safety regulator for chemicals sites, pipelines, oil and gas and general workplace issues
- HSE has a statutory obligation to provide land-use planning advice around major accident hazard (MAH) pipelines as defined under the UK Pipelines Safety Regulations
- In practice calculate zones of risk around the pipeline using mathematical models
- MAH pipelines are those carrying "dangerous fluids"
- CO₂ currently not classed as a "dangerous fluid" but this is under review

MISHAP

- MISHAP (Model for the estimation of Individual and Societal risk from HAzards of Pipelines)
- Calculates the land-use planning zones for flammable substances
- Needs adapting for CO₂
- Several questions that need answering:
 - Failure rates
 - Release rates for dense-phase CO_2
 - Influence of terrain on risk and hazard distances

Satartia CO₂ Pipeline Incident, 2020

- Failure of Denbury Gulf Coast Pipelines 24inch CO₂ pipeline near Satartia, Mississippi due to landslide
- Dense CO₂ cloud rolled downhill and engulfed Satartia village, a mile away
- Approx. 200 people evacuated and 45 required hospital treatment
- Communication issues: local emergency responders were not informed by pipeline operator of the rupture and release of CO₂
- Denbury's risk assessment did not identify that a release could affect the nearby village of Satartia

https://www.huffingtonpost.co.uk/entry/gassing-satartia-mississippi-co2-pipeline_n_60ddea9fe4b0ddef8b0ddc8f https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/2022-05/Failure%20Investigation%20Report%20-%20Denbury%20Gulf%20Coast%20Pipeline.pdf

Satartia village Buffer zone Release point

Figure 6: Topographical Map Showing the Delhi Pipeline (Green) and Denbury's Buffer Zone (Red) on Either Side of the Pipeline and the Proximity to Satartia (Blue Star Indicates the Rupture Site)

Atmospheric Dispersion of CO₂: Modelling Approaches

- Possible dispersion modelling approaches available to feed into pipeline risk assessment and account for terrain effects?
 - Integral, Computational Fluid Dynamics (CFD), hybrid CFD and mass-consistent models, ____ smooth particle hydrodynamics, Lattice Boltzmann, shallow-layer, Gaussian puff, emulators and correlations
- However, dispersion models will need to produce results quickly
- Example of modelling requirements:
 - 100 km long pipeline, release locations every 50 m = 2,000 runs
 - 4 release diameters (25 mm, 75 mm, 110 mm, full bore) = 8,000
 - 12 wind directions = 96,000 runs ____
 - 4 weather classes (F2.4, D2.4, D4.3, D6.7) = 384,000 runs
- Say each simulation requires 1 minute: 384,000 minutes = 267 days run time
- Or maybe a few days, with 100 processors running in parallel?

Modelling Approaches: Integral Models

- DNV: PHAST
- Flat terrain only ESR: DRIFT
- CERC: GASTAR Flat or uniform slope
- Gexcon: EFFECTS
- Shell: FRED

?

Strengths:

- Complex two-phase flow physics of CO₂ dispersion already coded into integral models and validated
- Quick to compute

Weaknesses:

Cannot handle complex shaped \bullet terrain

Ideas:

Is it possible to discretize terrain into say 50 m grid cells and use uniform slope within each cell?

Modelling Approaches: CFD

- DNV KFX Cartesian grid, stepped terrain Gexcon FLACS
- Ansys Fluent/CFX
- OpenFOAM

HSE CFD simulations for CO2PipeHaz

Body-fitted grid, smooth terrain

Jet from crater

Strengths:

Complex two-phase flow physics and terrain could be modelled

Weaknesses:

- Computing time too long for 384,000 simulations
- Need for validation

Modelling Approaches: Hybrid CFD and Mass Consistent

- CHARM
- Los Alamos National Laboratory: QUIC
- Aria Technologies: Parallel Micro Swift Spray (PMSS)
- Rockle models

https://www.lanl.gov/projects/quic/

financial district west of Paris

https://www.harmo.org/Conferences/Pro ceedings/_Kos/publishedSections/H14-<u>176.pdf</u>

© Crown Copyright HSE 2022

Faster than full CFD but still too time consuming for hundreds of thousands of simulations?

https://www.charmmodel.com/

Other Possible Modelling Approaches

- Smooth particle hydrodynamics: a type of grid-free CFD model used for free surface flows, e.g., dam failures, and also computer graphics. Can it be used for dense gases and run quickly?
- Lattice Boltzmann: A fast CFD method. Is it fast enough for 384,000 runs?
- Shallow-layer: Depth-averaged CFD (2D faster than 3D). Can numerical issues with the TWODEE model be resolved? Promising recent work by CEA/CNRS in France
- Gaussian puff: Similar to Lagrangian model with convected Gaussian puffs, e.g., the SCIPUFF model used operationally by US/UK defence agencies. Fast runs times but can it handle all the physics of dense gas dispersion in complex terrain?
- Emulators: Sophisticated parameterised curve-fit to results from a more complex model, e.g., a fit to CFD results. Very quick to run. Is it possible to parameterise complex terrain? Could terrain be discretized on a grid to reduce the number of degrees of freedom, e.g., fitted to average slope within each grid cell?
- Correlations: Simple rules to lengthen cloud down slopes and shorten clouds upslope

Modelling Approach: Correlation Example

- Vector arrows indicate magnitude and direction of slope
- Zones initially generated around pipeline using an integral model, e.g., PHAST Zones then displaced, as a function of the slope angle

Gridded terrain data converted to

slope vectors

Need to validate this approach using experimental data...

Pipeline zones displaced according to slope vectors

Experiments

CO₂ release experiments

- CO2PIPETRANS¹
- COSHER²
- CO2PipeHaz³
- MATTRAN⁴
- CATO2⁵
- Dense gas dispersion experiments with terrain Next slides…
- https://doi.org/10.1016/j.jjggc.2015.04.001 2.
- 3. http://dx.doi.org/10.1016/j.egypro.2014.11.274
- https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/G061955/1 4.
- https://www.co2-cato.org/publications/library1/co2-pipeline-transport-experimental-investigations 5.

https://www.dnv.com/news/large-scale-experimental-data-released-to-enhance-co2-pipeline-design-safety-26241

Dense Gas Dispersion in Complex Terrain: Experiments

Literature review by Batt (2021) <u>https://admlc.com/publications/</u>

Trial Name	Substance	Flammable	Toxic	Field	Wind tunnel	Instantaneous	Unobstructed	Obstructions	Topography
BA Hamburg	SF6				•	•	•	•	•
Burro	LNG	•		•			•		•
China Lake	Argon, Freon-12				•		•		•
COOLTRANS	CO2		•	•			•	•	•
EMU-ENFLO	Krypton				•			•	•
Guldemond	Argon				•		•	•	•
Jack Rabbit I	Chlorine, ammonia	•	•	•			•		•
McBride	Propane				•	•		•	•
MODITIC	CO2				•			•	•
Muller	SF6				•		•		•
Porton Down	Freon-12			•		•	•		•

Only four field-scale dense-gas dispersion trials with topography

Experimental Data: Burro 8

- LNG spills of between 24 m³ and 39 m³ onto water
- Eight tests at the Naval Weapons Centre (NWC), China Lake, California
- Downwind of the release basin, the terrain sloped upwards at about 7 degrees for 80 m before levelling out to about 1 degree
- In one test, Burro 8, wind speed was very low and dispersion behaviour was influenced by the terrain
- Issue: uncertainties with source of LNG vapour from the boiling pool

Fig. 2. Instrumentation array for 1980 LNG dispersion tests at the NWC, China Lake

Burro 8 trial after 2 s

Burro 8 trial after 30 s

Koopman *et al.* (1982) <u>https://doi.org/10.1016/0304-3894(82)80034-4</u>

Experimental Data: COOLTRANS

- Project led by National Grid in 2011-2014
- Dense-phase CO₂ releases at DNV Spadeadam test site, UK
- Above-ground vertically-upwards and horizontal releases, below-ground releases from pipelines into craters
- Pipeline rupture tests: 230 m long, 6-inch pipe at initial pressure 150 barg
- Site mainly flat and open but some obstructions and slopes in largest tests
- Concentration measurements using 63 sensors upwind/downwind from -150 m to 500 m Data not yet fully released to the public

Figure 3: Appearance of the dispersing cloud from a puncture in a case in which the plume returns to ground downstream of the crater compared with a case in which a 'blanket' is formed

Photos © National Grid / DNV

Allason et al. (2014) <u>https://doi.org/10.1115/IPC2014-33384</u>

Experimental Data: Jack Rabbit I

- Project led by US Departments of Homeland Security and Defense at US Army Dugway Proving Ground, Utah – a flat, dry lake bed
- Eight 1 and 2 ton releases of pressure-liquefied chlorine and ammonia
- Vertically downwards releases into a shallow 2 m deep, 50 m wide depression that was excavated into the desert playa
- Sensors located in concentric rings at radii of 50 m, 100 m, 150 m, 200 m, 250 m, 500 m, 1250 m, and 2500 m
- Data not yet examined fully in dispersion model validation exercises

Figure 1. Graphic Depiction of Jack Rabbit Depression; Jack Rabbit Test Program.

Photos © DHS S&T, CSAC

Experimental Data: Porton Down

- 42 tests funded by HSE at the UK Chemical Defence Establishment in 1970's
- Instantaneous 40 m³ releases of refrigerant gas from tent with collapsible walls
- Refrigerant gas mixtures: initial density ratios of 1.03 and 4.2 (relative to air).
- Five different grassland test sites, of which two involved sloping ground
- Majority of the measurements consist of time-integrated concentrations (doses) on four arcs located at distances of 25, 50, 100 and 150 m
- Dataset not much used for model validation, because measurements consist of doses and not concentration

Experimental Data: Issues

Burro

- Only one trial exhibited terrain effects, uncertain source conditions
- COOLTRANS
 - Data not publicly available, not previously used for model validation (?)
- Jack Rabbit I
 - Shallow circular depression on otherwise flat terrain
- Porton Down trials
 - Only doses not concentrations
- Need for dense-gas dispersion experiments with complex terrain raised as significant knowledge gap by Hanna et al. (2021) https://doi.org/10.1002/prs.12289 Without experimental validation, how can we trust model predictions?

Tentative Ideas for Future Activities?

- HSE would like to work with other partners to address the issues raised here
- Informal discussions with risk consultants (DNV, CERC, Gexcon etc.) at recent conferences indicated there is significant interest in this topic
- Proposing to hold a webinar in 2023, organised by the UK Atmospheric Dispersion Modelling Liaison Committee (<u>www.admlc.com</u>), to bring together international dispersion modelling experts and discuss possible solutions
- Regarding need for field-scale experiments:
 - Jack Rabbit III project led by US Departments of Homeland Security and Defense are ____ planning future large-scale trials in next few years: topography is an option. HSE can make introductions to JRIII project leaders if organisations are interested in joining JRIII INERIS have conducted CO₂ dispersion experiments at French army test site in an urban environment. Some tests completed in 2022, further tests planned in 2023. Contact: Olivier.Gentilhomme@ineris.fr or Jean-Marc.Lacome@ineris.fr

Acknowledgements

Contact email: <u>zoe.chaplin@hse.gov.uk</u>, <u>simon.gant@hse.gov.uk</u>

Thank you

those of the authors alone and do not necessarily reflect HSE policy

The contents of this presentation, including any opinions and/or conclusions expressed, are

CO₂ phase diagram

Fig. 1. CO₂ phase diagram (Pasquetto and Patrone, 1994).

