Summary of results from the Jack Rabbit III international model inter-comparison exercise on Desert Tortoise and FLADIS

Joseph Chang¹, Simon Gant², Sun McMasters³, Ray Jablonski³, Helen Mearns³, Shannon Fox³, Ron Meris⁴, Scott Bradley⁴, Sean Miner⁴, Matthew King⁴, Steven Hanna⁵, Thomas Mazzola⁶, Tom Spicer⁷, Rory Hetherington¹, Alison McGillivray¹, Adrian Kelsey¹, Harvey Tucker¹, Graham Tickle⁸, Oscar Björnham⁹, Bertrand Carissimo¹⁰, Luciano Fabbri¹¹, Maureen Wood¹¹, Karim Habib¹², Mike Harper¹³, Frank Hart¹³Thomas Vik¹⁴, Anders Helgeland¹⁴, Joel Howard¹⁵, Veronica Bowman¹⁵, Daniel Silk¹⁵, Lorenzo Mauri¹⁶, Shona Mackie¹⁶, Andreas Mack¹⁶, Jean-Marc Lacome¹⁷, Stephen Puttick¹⁸, Adeel Ibrahim¹⁸, Derek Miller¹⁹, Seshu Dharmavaram¹⁹, Amy Shen¹⁹, Alyssa Cunningham²⁰, Desiree Beverley²⁰, Matthew O'Neal²⁰, Laurent Verdier²¹, Stéphane Burkhart²¹, Chris Dixon²²

```
<sup>1</sup> RAND Corporation, Arlington, Virginia, USA
         <sup>2</sup> Health and Safety Executive (HSE), Buxton, Derbyshire and Bootle, Merseyside, UK
<sup>3</sup> Chemical Security Analysis Center (CSAC), Science and Technology Directorate (S&T), Department
                of Homeland Security (DHS), Aberdeen Proving Ground, Maryland, USA
                 <sup>4</sup> Defense Threat Reduction Agency (DTRA), Fort Belvoir, Virginia, USA
                          <sup>5</sup> Hanna Consultants, Inc., Kennebunkport, Maine, USA
                 <sup>6</sup> Systems Planning and Analysis, Inc. (SPA), Alexandria, Virginia, USA
                           <sup>7</sup> University of Arkansas, Fayetteville, Arkansas, USA
                           <sup>8</sup> GT Science and Software, Waverton, Cheshire, UK
                       <sup>9</sup> Swedish Defence Research Agency (FOI), Umeå, Sweden
                                   <sup>10</sup> EDF/Ecole des Ponts, Paris, France
                           <sup>11</sup> European Joint Research Centre (JRC), Ispra, Italy
              <sup>12</sup> Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
                                             <sup>13</sup> DNV, Stockport, UK
                  <sup>14</sup> Norwegian Defence Research Establishment (FFI), Kjeller, Norway
               <sup>15</sup> Defence Science and Technology Laboratory (DSTL), Porton Down, UK
                  <sup>16</sup> Gexcon, Bergen, Norway and Driebergen-Rijsenburg, Netherlands
<sup>17</sup> Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
                                  <sup>18</sup> Syngenta, Huddersfield, Yorkshire, UK
                               <sup>19</sup> Air Products, Allentown, Pennsylvania, USA
                 <sup>20</sup> Naval Surface Warfare Center (NSWC), Indian Head, Maryland, USA
                        <sup>21</sup> Direction Générale de l'Armement (DGA), Paris, France
                                       <sup>22</sup> Shell, York Road, London, UK
```

Abstract: DHS S&T CSAC and DTRA are currently planning a series of experiments involving largescale releases of anhydrous ammonia in 2024 and 2025, known as the Jack Rabbit III trials (JRIII). The aim of the project is to address gaps in modeling methodologies and emergency response procedures. To support the project, an international model inter-comparison exercise was initiated in 2021 to evaluate the performance of atmospheric dispersion models using data from the Desert Tortoise and FLADIS trials. The objective of the collaborative modeling exercise was to understand the capabilities and limitations of models that could be used to design the new JRIII trials (e.g., suitable sensor placement). Dispersion modeling teams from around the world were invited to participate on a voluntary basis. The exercise followed a similar successful model inter-comparison exercise conducted in 2019-20 on the Jack Rabbit II chlorine dispersion dataset. The coordinators of the JRIII inter-comparison exercise provided a set of model inputs for the participants to use and requested model predictions to be provided to them in a standardized format. Twenty independent modeling teams from North America and Europe provided results using a range of different models (i.e., empirically-based nomograms, integral, Gaussian puff, and computational fluid dynamics models). The agreement between model predictions and measurements varied considerably between different models. Given appropriate inputs, most models generally predicted concentrations that agreed well with the data. Useful insights were gained through discussions between participants involved in the exercise.