Phast modelling of the Desert Tortoise and FLADIS ammonia trials for the Jack Rabbit III model inter-comparison exercise

Alison McGillivray¹, Mike Harper², Frank Hart², Stephen Puttick³, Adeel Ibrahim³, Laurent Verdier⁴, Simon Gant¹, and Rory Hetherington¹

¹Health and Safety Executive (HSE), ²DNV, ³Syngenta, ⁴Direction Générale de l'Armement (DGA) 21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Aveiro, Portugal, 27-30 September 2022

Research - HSE funded to provide evidence which underpins its policy and regulatory activities **Guidance** - freely available to help people comply with health and safety law

RESEARCH AND GUIDANCE FROM

Contents

- JRIII modelling exercise participants who used Phast
- Phast capabilities overview
- Modelling approach taken by different groups
- Results
- Recommended Phast modelling approach going forward
- Conclusions

Phast modellers

- exercise on Desert Tortoise and FLADIS
- Each group worked independently
- Follow-on emails and Teams discussions
- Equinor joined the exercise in June 2022

Group	Phast Version	Modellers			
DGA, France	8.6	Laurent Verdier			
DNV, UK	8.61	Frank Hart & Mike Harper			
HSE, UK	8.4	Alison McGillivray			
Syngenta, UK	8.61	Adeel Ibrahim & Stephen Puttick			
Equinor, Norway	8.6	Sandra Nilsen			

Five groups used the DNV Phast software for the JRIII model inter-comparison

Meeting held to discuss modelling approach and results on 16 May 2022

Version 8.7 is currently the latest release (September 2022)

- Phast is one of the most popular consequence models used in UK/Europe for assessing industrial major accident hazards at oil/gas/chemical facilities
- Software features:
 - Source models for releases from: vessels, short pipes and long pipelines, pool spread and evaporation
 - Unified Dispersion Model: two-phase jets, buoyant/heavy and passive dispersion, droplet rainout
 - Models for time-dependent releases: steady-state, finite-duration, instantaneous or time-varying
 - Assumes flat terrain with uniform surface and constant atmospheric conditions

Phast overview

Model input conditions

- different modelling approaches taken
 - Syngenta and Equinor were the only groups who took the same approach

Group	Post-expansion two-phase source from SMEDIS project?	User-defined source with corrected mass flow rate?	Manually adjusted orifice diameter to give correct mass flow rate	Release conditions at bubble point (ambient temperature)	Phast core averaging time matched specified averaging time?	Isentropic or "conservation of momentum" expansion model	Phast version
DGA	No	No	No ¹	Yes ²	No	Isentropic	8.6
DNV	Yes	Yes	No	No	Yes	N/A	8.61
HSE	No	Yes	No	No	Yes	Isentropic	8.4
Syngenta	No	No	Yes	No	No	Isentropic	8.61
Equinor	No	No	Yes	No	No	Isentropic	8.6

¹ DGA modelled a fixed duration release based on the specified release duration and release rate, which meant that Phast itself determined the necessary orifice size

² DGA initially specified the source conditions using the exit pressure and temperature, but then changed this in the Phast interface to be the bubble point (saturation) conditions at the ambient temperature. However, this change led to some cases being modelled as a vapour release rather than a liquid release.

Modellers used conditions as specified by the JRIII exercise coordinators, but several

Model input conditions

What was the modelling issue with the exit pressure and temperature?

		DT1	DT2	DT4	FLADIS9	FLADIS16	FLADIS24
Orifice diameter	m	0.081	0.0945	0.0945	0.0063	0.004	0.0063
Release height	m	0.79	0.79	0.79	1.5	1.5	1.5
Exit temperature	°C	21.5	20.1	24.1	13.7	17.1	9.45
Exit pressure	bara	10.1	11.2	11.8	6.93	7.98	5.70
	barg	9.22	10.3	10.9	5.91	6.96	4.69
Release rate	kg/s	80.0	117	108	0.40	0.27	0.46
Release duration	S	126	255	381	900	1200 ^g	600
Rainout mass fraction	%	5	5	5	0	0	0
Site average wind speed	m/s	7.42	5.76	4.51	6.1	4.4	4.9
at reference height	m	2	2	2	10	10	10
Friction velocity	m/s	0.442	0.339	0.286	0.44	0.41	0.405
Surface roughness	m	0.003	0.003	0.003	0.04	0.04	0.04
Monin-Obukhov length	m	92.7	94.7	45.2	348	138	-77
Pasquill stability class	-	D	D	D-E	D	D-E	C-D
Ambient temperature	°C	28.8	30.4	32.4	15.5	16.5	17.5
at reference height	m	0.82	0.82	0.82	1.5	1.5	1.5
Ambient pressure	bar	0.909	0.910	0.903	1.020	1.020	1.013
Relative humidity	%	13.2	17.5	21.3	86	62	53.6
Averaging time for mean	S	80	160	300	600	600	400
values							

Source: JRIII initial modeling exercise description v2.3.pdf

Model input conditions

- groups except DNV

 - ____

The specified exit pressure and temperature for FLADIS trials 9 and 24 were in the vapour phase according to the phase diagram used by Phast, so these were modelled as vapour releases by all

In reality, the Desert Tortoise and FLADIS exit conditions were approximately <u>100% liquid</u> Exit conditions were in the vapour phase probably as a result of either non-equilibrium conditions or the pressure and temperature being measured at slightly different locations in the experiments

Phast uses DIPPR for the saturation conditions: https://chemicals.readthedocs.io/chemicals.dippr.html Alternative correlation shown from NIST: https://webbook.nist.gov/cgi/cbook.cgi?ID=C7664417&Mask=4#Thermo-Phase

Post-expansion source conditions

High velocity from default isentropic expansion model

	media dice predict a chimany fem verecity)								
		Desert Tortoise DT1				FLADIS FL9			
	HSE	DNV	Syngenta	DGA	HSE	DNV	Syngenta	DGA	
Final velocity (m/s)	246	90.3		663	617	65.2	617	624	
Liquid fraction	0.825	0.82		0.09	0.082	0.84	0.08	0.09	
Droplet diameter (µm)	83.7	107		0.94	0.91	144	0.9	0.9	

- Lower velocity from SMEDIS source
- ("conservation of momentum model" in Phast would also predict a similarly low velocity)

High velocity, low liquid fraction and small droplets (from condensation) all indicate a vapour release was modelled by Phast in these four cases

 \sim

Results: Desert Tortoise trial 1

Concentrations output from Phast at a height of 1 m above ground level (the height of the sensors in the experiments)

Ratio of predicted to measured arc-max concentrations

tion where	r(m)	C_p/C_m					
	λ (111)	DGA	DNV	HSE	SYN		
ion to passive	100	0.93	1.63	1.53	1.60		
le to phor rainout	800	1.07	0.53	0.91	0.92		

All predictions within a factor-of-two of the ulletmeasurements

FAC2 condition: $0.5 \le \frac{C_p}{C_m} \le 2$

Good agreement between model predictions ulletand measurements

Results: FLADIS trial 9

Concentrations output from Phast at same height as measurements, i.e., heights of 0.1 m, 0.5 m, 1.5 m at distances of 20 m, 70 m, and 238 m (or 240 m)

© Crown Copyright HSE 2022

Ratio of predicted to measured arc-max concentrations

est	r (m)	C_p/C_m					
		DGA	DNV	HSE	SYN		
of three nce between s in FL09	20	0.30	0.82	0.30	0.30		
	70	2.51	1.40	2.51	2.32		
	238	4.44	2.30	6.24	3.24		

- Models under-predicted measurements near orifice, ulletand over-predicted measurements further downstream
- DNV model performs best ullet
 - SMEDIS two-phase source for liquid release was used
 - More than half of DNV predictions within factor of two of measurements over all of the FLADIS trials

All Desert Tortoise and FLADIS Results

10³

Recommended Phast modelling approach going forward

for how best to use Phast for pressure-liquefied releases:

- Check the specified orifice exit pressures and temperatures on a phase diagram to confirm that 1. the conditions input to Phast produce the expected phase of the ammonia released in the experiments (i.e., liquid or vapour). Also check the predicted liquid fraction in the Phast results.
- Set the core averaging time to be the same as the specified toxic averaging time. 2.
- 3. For cases with rainout, find the initial post-expansion ammonia droplet diameter by running a simulation using the default isentropic expansion model and the modified CCPS droplet size correlation
- 4. Re-run the same Phast case using the conservation of momentum atmospheric expansion model, which gives a more representative post-expansion source velocity
- 5. Produce a user-defined source from Step 4 and change the droplet size to that found from Step 3, and then run Phast. This approach will use the best estimate for the release velocity and droplet size.

Based on discussions with Phast software developers at DNV, recommendations provided

Conclusions

- Five modelling groups (DGA, DNV, HSE, Syngenta and Equinor) produced results using Phast for the JRIII modelling exercise on Desert Tortoise and FLADIS
- Several different modelling approaches taken by the different groups
- Desert Tortoise: Phast results from all groups in good agreement with measurements (all predictions within a factor of two)
- FLADIS: Mixed results
 - DNV obtained good predictions using two-phase source from SMEDIS project (more than half predictions within a factor of two of measurements)
 - Other groups encountered issues: Phast simulated a vapour-phase release for FLADIS trials 9 and 24, due to specified exit temperature and pressure
 - Resulted in up to a factor of four difference between model predictions from different groups, and up to a factor of ten difference between predictions and measurements
- Causes of discrepancies were investigated
- The exercise provided valuable learning lessons for all involved
- Recommendations provided for how best to use Phast going forward for later JRIII work

Future Activities

- Rerun HSE simulations using v8.61 and v8.7 Examine far-field behaviour in Desert Tortoise trials
- Simulate future JRIII trials pipeline release scenarios
- Investigate using the console interface to Phast To run multiple scenarios for global sensitivity analysis
- Run Phast simulations for a previous ammonia incident As part of the next JRIII model inter-comparison exercise
 - Other Phast modellers welcome to join the exercise and collaborate

Acknowledgements

(Equinor)

Any questions?

The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy

Sincere thanks to participants in the modelling exercise: Mike Harper and Frank Hart (DNV), Stephen Puttick and Adeel Ibrahim (Syngenta), Laurent Verdier (DGA) and Sandra Nilsen

Thank you

