
UMIST
DEPARTMENT OF MECHANICAL,AEROSPACE

AND MANUFACTURING ENGINEERING

Thermodynamics and Fluid Mechanics Division

Development and Application of

a New Wall Function for
Complex Turbulent Flows

by

Simon Gant

University of Manchester

Institute of Science and Technology

P.O. Box 88, Manchester M60 1QD, UK

November 2002



Development and Application of

a New Wall Function for

Complex Turbulent Flows

by

Simon E. Gant

Department of Mechanical,
Aerospace and Manufacturing Engineering

A thesis submitted to
the University of Manchester Institute of Science and Technology

for the degree of Doctor of Philosophy

November 2002



Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for

another degree or qualification of this or any other university, or other institution of learning.

i



Acknowledgements

I would like to express my sincere thanks to Professor Brian Launder, my supervisor, for his

guidance and support throughout the course of this research. I would also like to thank Dr Tim Craft

and Dr Hector Iacovides for their advice and patience in answering my numerous questions. The

many discussions I have had with them have benefitted considerably my understanding of turbulent

flows and turbulence modelling.

Funding for this project was provided by the UK Engineering and Physical Sciences Research

Council (EPSRC), through the ROPA scheme (grant ref: GR/M99170), and from the European Union

Project: “Models for Vehicle Aerodynamics (MOVA)” (BRITE/EURAM BE-97-4043). I would like

to thank all the members of the MOVA project group for their helpful discussions. In particular I

would like to thank: Professor D. Laurence (UMIST & Electricité de France), Professor K. Hanjali ć
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Abstract

Wall functions are widely used in commercial CFD software and offer significant savings in compu-

tational expense compared to low-Reynolds-number formulations. However, existing wall functions

are based on assumed near-wall profiles of velocity, turbulence parameters and temperature which

are inapplicable in complex, non-equilibrium flows. A new wall function is developed in this thesis

which, instead of assuming profiles of the dependent variables, determines these quantities by solving

boundary-layer-type transport equations across a locally-defined subgrid.

The new wall function, called UMIST-N, is applied to three test cases: an axisymmetric impinging

jet, a spinning “free” disc and a three-dimensional simplified car body. The impinging jet flow (H/D =

4; Re = 70,000) is studied using linear and non-linear k− ε models with the UMIST-N wall function,

four “standard” log-law-based wall functions and full low-Re treatments. It is demonstrated that heat

transfer predictions with the UMIST-N wall function are in excellent agreement with low-Re model

results, in contrast to standard log-law-based wall functions. The new wall function also shows less

sensitivity to the size of the near-wall cell than standard wall functions.

Spinning-disc calculations are carried out at rotational Reynolds numbers up to Reφ = 3.3× 106

using a similar array of turbulence models and wall treatments. The UMIST-N wall function and

low-Re model results are again in excellent agreement, in contrast to standard wall functions which

are unable to predict correctly the radial velocity profile. The location of the predicted transition point

from laminar to turbulent flow on the spinning-disc shows some slight sensitivity to the near-wall grid

arrangement with the UMIST-N wall function, although the results are close to those obtained with

the low-Re models.

Simulation of the simplified “Ahmed” body flow demonstrates that the UMIST-N wall function

can be applied to complex geometry using a non-orthogonal multiblock grid. Flow predictions over

the 25◦ rear slant of the car using UMIST-N with linear k− ε model are shown to be similar to those

obtained using a log-law-based wall function.

In the three test-cases considered, computing times with the new wall function are up to twice as

high as for standard wall functions, but they are still an order-of-magnitude less than low-Reynolds-

number calculations.
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Nomenclature

Symbols Definition

aE,W,N,S,T,B,P East, west, north etc. coefficients in the discretized equations

ai j Anisotropic stress, ai j = uiu j/k−2δi j/3

Ae,w,n,s,t,b Areas of the east, west, north etc. cell faces

A2 Second invariant of anisotropic stress, A2 = ai jai j

Aξ
x,A

η
x ,Aζ

x Components of the area vector, Aξ
x = J∂ξ/∂x ; Aη

x = J∂η/∂x ; Aζ
x = J∂ζ/∂x

ch Constant of integration in the temperature log-law

ci,di,ei Subgrid interpolation functions

cl Constant in near-wall length-scale definition

cm Integral moment (in the spinning disc flow, cm = M/0.5ρΩ2r5)

cp Constant-pressure specific heat

cw “Constant” in the differential Yap correction

cε1,cε2 Constants in the modelled ε transport equation (Equation 2.15)

cµ Coefficient or function in eddy-viscosity formula (Equation 2.9)

c1 − c7 Constants in non-linear k− ε model (Equation 2.27)

C Constant of integration

CD Coefficient of drag

CF Coefficient of friction

CP Coefficient of pressure, CP = (P−P0)/0.5ρU2
0

x



xi

C∗
B,C∗

K ,C∗
S Components of pressure drag on Ahmed body, due to the base, nose cone and

rear slant, respectively

C∗
R Friction drag on Ahmed body

CW Total drag on Ahmed body

di j Diffusion term in the uiu j transport equation

dledy Equilibrium length-scale gradient in the differential Yap correction

D Diameter (in the impinging jet flow, the diameter of the inlet pipe)

De,w,n,s,t,b Diffusion coefficients for the east, west, north etc. cell faces

ei,ei Cartesian covariant and contravariant unit vectors, respectively (N.B. these are

equivalent, ei ≡ ei)

E Integration “constant” used in wall functions (E ≈ 9.79 for smooth walls)

fRS Damping term in the differential Yap correction

f1, f2, fµ Damping functions used in the low-Reynolds-number k− ε model

F Difference between the predicted and equilibrium length-scale gradients in

the differential Yap correction

Fe,w,n,s,t,b Convective mass flux through the east, west, north etc. cell faces

Fwall Wall force, Fwall = −τwallA

g Determinant of the gi j matrix

gi,gi Curvilinear covariant and contravariant base vectors, respectively

gi j,gi j Covariant and contravariant metric tensors, respectively

G Production rate of turbulent kinetic energy, sometimes denoted Pk

Gi j Adjoint of the gi j matrix

h Heat transfer coefficient, h = qwall/(Twall −T)

H Height (in the impinging jet flow, the height from the inlet pipe to the wall)

J Jacobian of transform matrix for curvilinear coordinate system

J j
φ Contravariant components of the scalar flux vector, q



xii NOMENCLATURE

k Turbulent kinetic energy, k =
1
2

(uu + vv+ww)

L Reference length (in the Ahmed body flow, L is the height of the Ahmed body)

l Length scale

lm Mixing length

M Moment, defined in the spinning disc flow as M = −2π
� r

0 r2τφdr

n Displacement in the wall-normal direction

n̂ Wall-normal unit vector

n̂x, n̂y, n̂z Cartesian components of the wall-normal unit vector, n̂

Nu Nusselt number (Equation 5.1)

P Mean pressure

P(σ/σt) Jayatilleke P-function in the temperature log-law

P
′

Pressure correction (in the SIMPLE algorithm) or mean pressure plus the

isotropic Reynolds stress component
(

P
′
= P+2ρk/3

)
in the momentum

equation

Pe Cell Peclet number, Pe = F/D

Pi j Production term in the uiu j transport equation

Pk Production rate of turbulent kinetic energy, sometimes denoted G (Equation

2.13)

Pk Total average production rate of turbulent kinetic energy in near-wall cell

Pkuv Production rate of turbulent kinetic energy due to shear stress

Pε3 Gradient production term in low-Re model ε̃-equation, sometimes denoted E

(Equation 2.24)

P0 Reference pressure

q Scalar flux vector

qwall Wall heat flux

r Radius

rb Outside disc radius



xiii

Rv Viscous sublayer Reynolds number, Rv = k1/2
v yv/ν

Rφ Residual for discretized φ-equation

Re Reynolds number, Re = Ul/ν

Rt , R̃t Turbulent Reynolds number, Rt = k2/νε ; R̃t = k2/νε̃

Reτ Reynolds number based on the wall friction, Rτ = UτL/ν

Reφ Rotational Reynolds number, Reφ = Ωr2/ν

s Physical distance parallel to the curvilinear ζ-axis

sP Contributions to linearized source term which are a function of the dependent

variable

sU Source term in discretized transport equation

S, S̃ Dimensionless strain invariants (Equation 2.32) or source term

SI Dimensionless third invariant of the strain-rate tensor

Si j Strain-rate tensor, Si j = ∂Ui/∂x j +∂U j/∂xi

t̂ Tangential, or wall-parallel, unit vector

t̂x, t̂y, t̂z Cartesian components of the wall-parallel unit vector, t̂

T Temperature

Twall Wall temperature

Tτ Friction temperature, Tτ = qwall/ρcpUτ

T+ Dimensionless temperature, T + = (Twall −T )/Tτ

ui = u,v,w Turbulent velocities (i.e. instantaneous minus mean velocities)

uu,vv,ww

uv,uw,vw

uiu j





Reynolds (turbulent) stresses

ûiu j Non-linear components of the Reynolds stress

u2
n Reynolds stress in the wall-normal direction

U Velocity vector

U,V,W Mean velocity components



xiv NOMENCLATURE

Ure f Reference velocity used to non-dimensionalize variables in STREAM

Ux,Uy,Uz Cartesian components of the velocity vector, U

U0 Free-stream velocity

Uτ Friction velocity, Uτ =
√

τw/ρ

U+ Dimensionless velocity, U+ = U/Uτ

W Tangential velocity in cylindrical-polar coordinates

x, y, z, xi Cartesian coordinate directions

y+ Dimensionless distance to the wall, y+ = yUτ/ν

y∗ Dimensionless distance to the wall, y∗ = y
√

k/ν

Yc Yap correction

Ydc Differential Yap correction

Greek Symbols

α Under-relaxation factor or scaling factor used in the UMIST-N wall function

calculation of wall-normal velocity

β Rear-slant angle of the Ahmed body (to the horizontal)

βi
j Elements of the inverse Jacobian matrix which are used to obtain curvilinear

components from Cartesian components, βi
j ≡ ∂ξi/∂x j

Γφ Diffusion coefficient for parameter φ

Γi jk Christoffel symbol of the first kind

Γk
i j Christoffel symbol of the second kind

δi j,δi j,δ j
i The Kronecker delta (if i = j then δi j = δi j = δ j

i = 1, otherwise, if i 6= j then

δi j = δi j = δ j
i = 0)

∆ Denotes change in given variable

∆x,∆y,∆z Physical cell dimensions (i.e. distance between cell-faces) in Cartesian coor-

dinates

∆ξ,∆η,∆ζ Computational cell dimensions (i.e. distance between cell-faces) in curvilinear

coordinates



xv

∆Vol Cell volume

ε Rate of dissipation of turbulent kinetic energy

ε Average rate of dissipation of turbulent kinetic energy in near-wall cell

ε̃ Isotropic part of turbulence energy dissipation (where, by definition, ε̃ = 0 at

the surface of a solid boundary)

εi j Dissipation term in the uiu j transport equation

η Maximum of the strain and vorticity invariants,η = max (S,Ω), or wall-parallel

curvilinear coordinate in the UMIST-N wall function

θ Momentum thickness (θ =
� ∞

0 |W/Ωr (1−W/Ωr)|dy) or angle between two

vectors

κ von Kármán constant in the velocity log-law, κ ≈ 0.42

κh von Kármán constant in the temperature log-law, κh = κ/σt

λ Function used in Johnson & Launder wall function, thermal conductivity (λ = µc p/σ)

or Taylor microscale

λt Turbulent thermal conductivity

µ Molecular or dynamic viscosity

µe f f Effective viscosity, µe f f = µ+µt

µt Turbulent (eddy) viscosity

ν Kinematic viscosity, ν = µ/ρ

νt Kinematic turbulent (eddy) viscosity

ξi = (ξ,η,ζ) Curvilinear coordinate directions. In the UMIST-N wall function, the ξ- and

η-axes are parallel to the wall and the ζ-axis intersects the wall.

ρ Density

ρ′
Reference density used to non-dimensionalize variables in STREAM

σ Molecular Prandtl number, σ = µcp/λ

σk,σε Empirical constants in k and ε transport equations

σt Turbulent Prandtl number, σt = µt cp/λt



xvi NOMENCLATURE

τ Shear stress

τwall Wall shear stress

φ General variable or scalar parameter

φi j Redistribution or pressure-strain correlation

ϕ Ahmed body rear slant angle (to the horizontal) as used by Ahmed et al. (equiv-

alent to β, see above)

ω Specific rate of dissipation of turbulent kinetic energy, ω = k/ε

Ω Angular velocity

Ω,Ω̃ Dimensionless vorticity invariants (Equation 2.35)

Ωi j Vorticity tensor, Ωi j = ∂Ui/∂x j −∂U j/∂xi

Subscripts

b Bulk value

body Pertaining to the Ahmed body without the stilts

E,W,N,S,T,B,

EE,WW,NN,SS,

T T,BB,

e,w,n,s, t,b





Node and face values of variables

i Covariant components, i = 1,2,3

in Inlet value

(i) Physical covariant components

nb Neighbouring nodes

NL Non-linear

P Value at the near-wall node or current node

tot Total

v Value at the edge of the viscous sublayer

wall Wall value

x,y,z Derivative with respect to the Cartesian coordinate components



xvii

ξ,η,ζ Derivative with respect to the curvilinear coordinate components

τ “Friction” value (as in the friction velocity, Uτ)

Superscripts

calc Calculated value at present iteration

i Contravariant components, i = 1,2,3

(i) Physical contravariant components

n Wall-normal

new Final or new value at present iteration

old Value at previous iteration

t Tangential or wall-parallel

T Transpose of the matrix

+ Non-dimensional near-wall value scaled by Uτ

∗ Non-dimensional near-wall value scaled by
√

k, guessed values in SIMPLE

algorithm or assigned boundary value

()∗ In the UMIST-N wall function, ()∗ denotes that the upstream value of the gra-

dient inside parenthesis is transformed from the coordinate system in upstream

cell into the coordinate system of the current cell, so that both upstream and

current cells use the same base vectors

′ Characteristic variables used in STREAM to non-dimensionalize variables, or

correction values in SIMPLE algorithm

Acronyms

AIAA American Institute of Aeronautics and Astronautics

AGARD Advisory Group for Aerospace Research & Development

ASM Algebraic Stress Model

ASME American Society of Mechanical Engineers

CFD Computational Fluid Dynamics

CHF Constant Heat Flux



xviii NOMENCLATURE

CL Chieng & Launder wall function

CPU Central Processing Unit

CWT Constant Wall Temperature

DGLR Deutsche Gesellschaft für Luft- und Raumfahrt

DIA Direct Interaction Approximation

DNS Direct Numerical Simulation

EPSRC Engineering and Physical Sciences Research Council

ERCOFTAC European Research Community on Flow, Turbulence and Combustion

EVM Eddy-Viscosity Model

IUTAM International Union of Theoretical and Applied Mathematics

JL Johnson & Launder wall function

LEVM Linear Eddy-Viscosity Model

LES Large Eddy Simulation

LSTM Lehrstuhl für Strömungsmechanik

MOVA Models for Vehicle Aerodynamics

NLEVM Non-Linear Eddy-Viscosity Model

N-S Navier-Stokes

PLDS Power Law Differencing Scheme

PSL Parabolic Sub-Layer

QDNS Quasi-Direct Numerical Simulation

QUICK Quadratic Upwind Interpolation for Convection Kinematics

RANS Reynolds-Averaged Navier-Stokes

RDT Rapid Distortion Theory

RMS Root Mean Square,

(√
φ2

)

RNG Re-Normalization Group



xix

SAE Society of Automotive Engineers

SCL Simplified Chieng & Launder wall function

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SSG Speziale, Sarkar & Gatski differential stress model

SST Shear Stress Transport turbulence model

STREAM Simulation of Turbulent Reynolds-averaged Equations for All Mach numbers

TDMA Tri-Diagonal Matrix Algorithm

TEAM Turbulent Elliptic Algorithm – Manchester

T-S Tollmien-Schlichting

TVD Total Variation Diminishing

UMIST University of Manchester Institute of Science and Technology or

Upstream Monotonic Interpolation for Scalar Transport

UMIST-A Unified Modelling through Integrated Sublayer Treatment - an Analytical ap-

proach

UMIST-N Unified Modelling through Integrated Sublayer Treatment - a Numerical ap-

proach

URANS Unsteady Reynolds-Averaged Navier-Stokes

VLES Very Large Eddy Simulation



Chapter 1

Introduction & Literature Survey

1.1 Background

Understanding and predicting turbulent flow is vital for a wide range of applications, from weather

prediction to car design. The phenomena that are observed in turbulent flows, such as the beautiful and

intricate eddy structures, are also fascinating. Turbulence is characterized by its disorder or apparent

unpredictability. It typically has a large range of length and time scales: in atmospheric turbulence

the eddies may range in size from centimetres up to hundreds of kilometres. The rapidly changing

velocity field in turbulent flows encourages rapid mixing which enhances diffusion of momentum,

mass and heat. This feature can be advantageous if one wants to remove heat or mix fluids, or it

can be disadvantageous if, for instance, one wants to minimize friction drag. Turbulence is also

dissipative, meaning that energy must be constantly supplied to the flow in order for turbulence to be

maintained or else it will decay (a commonly cited example being the motion of stirred liquid in a

cup, where the fluid eventually ceases moving). This dissipation of turbulent kinetic energy is linked

to an “energy cascade”, where energy is supplied to the largest eddies by shearing motions in the bulk

flow, which interact with and transfer energy to smaller eddies. In the smallest eddies the velocity

gradients are largest and viscous action converts kinetic energy into heat. Whilst it is influenced by

the fluid viscosity and density, turbulence is not a material property of the fluid but a continuum flow

phenomena (continuum in the sense that the minimum length scale in a turbulent flow is always much

greater than the mean free path of its constituent molecules). The turbulence considered in this thesis is

also three-dimensional. Turbulence can occur in 2-D but it exhibits behaviour unlike 3-D turbulence,

in particular the energy cascade seems to work in reverse, leading to larger and larger eddies.

Turbulent flow predictions have evolved significantly during the last half-century, largely due to

the appearance of digital computers in the 1950’s and 60’s, and their exponential increase in process-

ing power over the following decades. Before the advent of computing, predictions were made using

either empirical correlations or integral methods. The latter approach involves the solution of ordi-

nary differential equations (in 2-D flows) through the use of integral parameters such as momentum

thickness and skin-friction coefficient (by assuming profiles or shape functions, see for example [1]).

1
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This approach is limited to fairly simple flows which do not involve boundary-layer separation or

recirculation, but is still commonly used in industry [2].

At present, there are five main approaches to predicting turbulent flow. The first and conceptually

the simplest approach is to solve directly the equations governing fluid flow, the Navier-Stokes equa-

tions. This so-called “Direct Numerical Simulation” (DNS) has the advantages of not needing any

assumptions of the turbulence behaviour and hence data from DNS is often used in a similar manner

to experimental results (the bonus being that quantities that cannot be determined experimentally can

easily be examined, as all flow parameters are calculated). In fact it has even been used to estimate

the measurement errors in experiments (see, for example, Moin & Mahesh [3]). DNS is also proving

useful for examining the internal mechanisms of turbulence and transition from laminar to turbulent

flow. The disadvantage of DNS is the computational expense: massively parallel computers have to

be used and computations are limited to relatively low-Reynolds-number flows with a small ratio of

large to small eddies. This high cost is due to the nature of turbulence itself. In order for turbulence to

be represented accurately it is necessary to resolve all the length and time scales of the flow. Tennekes

& Lumley [4] showed that the computational cost scales with the cube of the integral-scale Reynolds

number, Re3
l . It is therefore unlikely that DNS will be used routinely in engineering calculations for

the foreseeable future, although it is invaluable as a tool for providing very detailed data which may

be used to help develop or to validate turbulence models.

The second approach, Large Eddy Simulation (LES), uses a coarser grid than that employed in

DNS and applies the filtered Navier-Stokes equations (effectively N-S equations averaged over a small

region of space). Since the grid cannot discern the smallest scales of turbulence, a sub-grid-scale

model is used to account for the dissipation of energy at the smallest scales and any “backscatter” of

energy from the small to the large scales. The large-scale motions, which are responsible for most of

the transport of momentum and turbulence energy, are computed explicitly and do not require mod-

elling. Therefore, it is anticipated that this method should be more accurate than the RANS approach

discussed below, in which all turbulent scales are modelled. LES was first developed for applica-

tion to weather prediction, but is increasingly being used throughout the engineering and scientific

communities. However, the relatively high computational expense still limits LES to analysis and

trouble-shooting rather than as an aid to engineering design1 .

The third approach uses Reynolds-Averaged Navier-Stokes (RANS) equations. Here the turbulent

flow is considered as consisting of two components: a fluctuating part and a mean or average part. The

mean flow is calculated using RANS equations which are obtained by averaging the Navier-Stokes

equations over time, space or using ensemble averaging. The equations look very similar to the un-

averaged (instantaneous) Navier-Stokes equations but for an additional non-linear term involving the

Reynolds stress, uiu j (where ui is the fluctuating velocity and the overbar denotes Reynolds averag-

ing). A transport equation can also be derived for the unknown Reynolds stress, but this involves

1For example, at present in UMIST an opposed wall-jet flow is being examined using both LES and RANS approaches.
The RANS simulations (using a two-equation model) take approximately 6 hours whereas the LES simulations take between
1 and 2 weeks, on the same platform, depending on grid resolution.
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additional unknown third-order terms (uiu juk). Likewise, the expression for uiu juk involves unknown

fourth moments and so on. This issue of specifying the Reynolds stress is known as the turbulence

modelling “closure problem”. The closure problem is also complicated by the fact that the Reynolds

stress may depend upon non-local events. In the exact equation for uiu j there are terms involving the

fluctuation pressure, p, for which one can derive a Poisson equation. This equation can be solved,

using Green’s functions, but the value of p at any point in the flow is found to be a function of the

velocity at all points throughout the whole flow domain. “Single-point” closures assume that the

Reynolds stress can be calculated in terms of local parameters. Various single-point turbulence mod-

els exist which attempt to approximate uiu j, ranging from simple algebraic expressions to additional

transport equations for each of the six independent Reynolds stresses. These models are discussed

below (Section 1.2).

Solving the RANS equations with a single-point linear eddy-viscosity model (discussed below)

can be thought of as solving the Navier-Stokes equations for a laminar flow (i.e. the mean velocity)

but with a modified fluid viscosity which is a function of the local turbulence behaviour. If the flow is

stationary (i.e. if the averaged velocity field does not change over time) it is not necessary to compute

the time-dependent flow behaviour with a RANS scheme, unlike DNS or LES where the flow must

always be considered as unsteady. Symmetry can also be used to reduce the computational demands

where appropriate so, for example, the axisymmetric impinging jet studied in this thesis was treated

as essentially a 2-D problem. DNS and LES on the other hand require full 3-D solutions in order to

model 3-D turbulence. The RANS approach using single-point closure is therefore economical and

flexible and is widely used in industry for both design and analysis.

The fourth method of analyzing turbulent flows involves “multi-point” or in most cases simply

“two-point” correlations. Here the turbulent statistics at two separate points in space are used. The

analysis is complex and the resulting equations are sometimes intractable. Research is principally

being undertaken by two groups, L’Ecole Centrale de Lyon and the Los Alamos National Laboratories.

Complex turbulent flows have been examined using two-point closures, but only in relatively simple

geometries. Whilst this approach is unlikely to be used in practical engineering applications in the

near future, the theories developed in two-point closures give insight into some of the physics of

turbulent interactions and provide guidance for the development of single-point turbulence models.

The fifth and final approach to predicting turbulent flow uses Probability Density Functions (PDFs).

A PDF expresses the likelihood of an event taking place per unit sample space2. The mean velocity

and Reynolds stress are the first and second moments of the Eulerian PDF of velocity. Therefore, if

the shape of the PDF can be determined then the closure problem can be solved. An equation for

the velocity PDF can be derived from the Navier-Stokes equations. In this equation the convective

transport and the mean pressure gradient term are in closed form but the remaining fluctuating pres-

sure and viscous terms require modelling. Various models for the PDF equation are detailed by Pope

2For example, if there is a uniform probability of velocity, V , being greater than one and less than three metres per
second (i.e. an equal chance that V will take any value between 1 and 3 m/s), then the PDF will be a constant value of 1/2
between V = 1 and V = 3.
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[5]. This method has mostly been applied to reactive flows because it avoids the need for additional

closure approximations in the chemical reaction equations. For simpler non-reactive flows, the current

PDF models involving particle methods lead to increased computing times compared to single-point

Reynolds-stress models. As yet, there have not been sufficient comparative studies between PDF and

Reynolds-stress models to draw any firm conclusions as to their relative accuracy.

For simplicity, the above discussion has been limited to the five main approaches to predicting

turbulent flow. There are numerous other hybrid methods in which, for example, an unsteady RANS

calculation is used near solid boundaries while LES is applied in the bulk of the flow (an approach

dubbed “Detached Eddy Simulation”, DES). An interesting discussion of hybrid methods (including

DES, VLES and URANS) is provided by Spalart [6].

The objective of the work presented in this thesis is to develop a new wall boundary condition

suitable for simulations using RANS equations and single-point Reynolds-stress models (the third

of the above five approaches). The following sections review single-point Reynolds-stress models,

near-wall flow phenomena and current approaches used in modelling the near-wall flow behaviour.

1.2 Turbulence modelling

The Reynolds-averaged continuity and momentum equations can be written in Cartesian coordinates

as follows:
∂ρ
∂t

+
∂

∂x j
(ρU j) = 0 (1.1)

∂
∂t

(ρUi)+
∂

∂x j
(ρUiU j) = − ∂P

∂xi
+

∂
∂x j

[
µ

(
∂Ui

∂x j
+

∂U j

∂xi

)
+λδi j

∂Um

∂xm
−ρuiu j

]
(1.2)

where upper-case Ui and P denote Reynolds-averaged velocity and pressure, ρ is the density, µ is

the molecular viscosity, λ is the bulk viscosity and δi j is the Kronecker delta. Expanding the above

expressions in three-dimensions gives 4 equations (continuity and three momentum equations) and

10 variables: three velocity components (U , V and W ), pressure and six independent Reynolds stress

components3 . To close this system of equations, an expression for the Reynolds stress needs to be

found. Boussinesq, in the late nineteenth century, approached the turbulence closure problem by

assuming the turbulent stress to be proportional to the strain rate, introducing an apparent or “eddy”

viscosity as the scalar proportionality term. The turbulence closure problem therefore changed from

calculating six Reynolds stresses to finding one eddy-viscosity. One of the simplest approaches to

calculating this eddy-viscosity has been the mixing length model which was derived independently by

G. I. Taylor [7] and L. Prandtl [8]. Here, the following expression is obtained for the eddy-viscosity

in a simple shear flow in which ∂U/∂y is the only strain-rate:

νt = l2
m

∣∣∣∣
∂U
∂y

∣∣∣∣ (1.3)

3There are only six independent components, since uiu j is a symmetric tensor (uiu j = u jui).
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The mixing length, lm, is a characteristic of the local flow and is prescribed algebraically. There are

no additional transport equations to solve and so the mixing length model is referred to as an algebraic

or zero-equation model. The problem is now a question of how to prescribe the mixing length, lm.

In the fully-turbulent region of equilibrium boundary layers, lm can be described by a simple linear

expression, lm = κy, where y is the distance from the wall and κ the von Kármán constant. However, in

more complex flows lm must be varied considerably to obtain good experimental agreement. Another

limitation of the simple mixing length model is that it predicts that the turbulent viscosity vanishes

when the strain rate (∂U/∂y) is zero, as may occur for example in separated boundary layers, whereas

in reality the effects of turbulence can be significant in such regions.

A slightly more sophisticated class of models involves the solution of a transport equation for a

turbulence parameter. Prandtl’s one-equation model [9] solves a transport equation for the turbulent

kinetic energy, k, so that the eddy-viscosity is given by:

νt = cµk1/2l (1.4)

where cµ is a constant and l is a prescribed length scale. In this model, the problem associated

with turbulent viscosity becoming zero where the velocity takes a maximum or minimum value is

overcome by using k1/2 as a velocity scale. However, as with the zero-equation models, its weakness

is the algebraic length scale prescription: a different algebraic expression needs to be applied for

different flow geometry. A more recent one-equation model by Spalart & Allmaras [10] which solves

a transport equation directly for νt has been quite successful in predicting attached flow around airfoils

[11]. However, it performs less well in separated flows and the model requires the prescription of a

wall-distance which can be difficult to specify around a body of complex geometry.

Two-equation eddy-viscosity models involve the solution of transport equations for two turbulence

parameters (usually turbulent kinetic energy and a second independent variable). This enables the

calculation of the velocity and length scales which are used to calculate the eddy-viscosity. There have

been many two-equation models using a variety of different choices for the second variable (e.g. ε, kl,

ω, ω2, τ). The most popular scheme for the last 20 years has been the k− ε model. The “standard”

version of the model was presented by Jones & Launder [12] with improved values for constants and

damping functions given later by Launder & Sharma [13]. In the k− ε model the eddy-viscosity is

calculated from:

νt = cµ
k2

ε
(1.5)

where cµ is a constant of proportionality, which is normally defined empirically by considering flow

under local equilibrium. The quantity ε is the rate of dissipation of turbulent kinetic energy per unit

mass, which appears directly in the k-equation as a sink term. The dissipation rate can be thought

of physically as the speed at which turbulent kinetic energy is transferred from large scale eddy-

motion to smaller scales (since the rate of dissipation by the small eddies is equal to the rate of

energy transfer from the large eddies). An exact equation for the transport of ε can be derived from
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the definition of the dissipation rate4 but the expression includes many unknown terms, including

double and triple correlations of fluctuating velocity, pressure and velocity gradients (see, for example

[14]). The modelled ε-equation of Launder & Sharma was therefore devised more by intuition and

empirical reasoning, following the earlier work of Chou [15], Davidov [16] and Harlow & Nakayama

[17]. Reasonably accurate solutions have been obtained using the k− ε model for a wide range of

industrially relevant flows.

Another popular two-equation model solves a transport equation for the “turbulence frequency”

or, more correctly, the dissipation rate per unit turbulent kinetic energy, ω, as the second parameter5 .

This approach was first suggested by Kolmogorov [18] and in more recent times the major proponent

of the k−ω model has been Wilcox. In his book [14], Wilcox discusses the performance of k− ε and

k−ω models with reference to free shear flows, boundary layers and separated flows and reports that

the k−ω model performs well in 2-D boundary layers with adverse or favourable pressure gradients

and in recirculating flows, but suffers from increased sensitivity to freestream boundary conditions in

free shear flows. Since the dissipation rate, ε, tends to a finite value at the wall and k falls to zero, ω
(= ε/k) tends to infinity. To overcome this problem, wall boundaries are handled by prescribing the

value of ω at the first node adjacent to the wall. For a review of one and two-equation models see, for

example, Pope [5] or Patel et al. [19].

Menter [20] adopted a pragmatic approach to two-equation modelling, taking the best aspects

of both k − ε and k−ω models and blending the two. In the Shear Stress Transport (SST) model,

the k−ω model is applied in the inner region of the boundary layer (near the wall) whilst the k− ε
model is used in the outer region and in free shear flows, to remove the k−ω model’s dependence

upon freestream turbulence levels. The expression for eddy-viscosity is also modified to make the

shear stress proportional to the kinetic energy in the boundary layer. Two blending functions, which

employ the distance from the wall, are used to switch between the turbulence models and to modify

µt . The SST model has been demonstrated to perform well in a variety of flows including adverse

pressure-gradient boundary layers and transonic flows.

Whilst linear eddy-viscosity models are, in general, relatively easy to implement and give rea-

sonable predictions of attached boundary layer flows, they have a number of limitations. In simple

shear flows where the velocity U = U(y), the normal Reynolds stresses predicted by a linear EVM

are isotropic (i.e. u2 = v2 = w2 = 2k/3) whereas experiments and DNS studies [21] indicate that there

is normal stress anisotropy with 0.5u2 ≈ v2 ≈ w2. Whilst this may not be influential in correctly

predicting the dynamic field in a simple shear flow, Brundrett & Baines [22] showed that the cor-

rect prediction of normal stress anisotropy is vital in predicting secondary flow in non-circular ducts.

In impinging flows, linear models which have the turbulent kinetic energy production proportional to

the strain-rate squared
(
Pk ∝ S2

)
overpredict the turbulent kinetic energy near the stagnation point and

4The dissipation rate of turbulent kinetic energy is defined as: ε = ν ∂ui
∂xk

∂ui
∂xk

.
5One can transform the modelled ε-equation into the ω-equation by re-tuning the constants and introducing an

additional cross-diffusion term. This source term can be derived from the definition (ω = ε/k) and expanding
(Dε/Dt = ωDk/Dt + kDω/dt) using the transport equations for k and ω.
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therefore predict far higher heat transfer rates than occur experimentally (see discussion in Chapter 5).

In addition, a linear model predicts a linear variation in swirl velocity with radius in a fully-developed

swirling shear flow in a pipe, although experiments [23] indicate that the profile is non-linear. Like-

wise, the asymmetric velocity profile that is observed in a fully-developed curved channel flow cannot

be predicted with a linear EVM without curvature corrections [24].

More sophisticated Differential Stress Models (DSMs), also called Second-Moment Closures or

Stress-Transport Models, are able to overcome this inability to account properly for rotational strains

and the inaccurate prediction of normal stress anisotropy. These models involve the solution of trans-

port equations for each of the independent Reynolds stress components. The transport equations for

the Reynolds stress are of the following form:

Duiu j

Dt
= Pi j +di j + εi j +φi j (1.6)

where terms on the right-hand-side are respectively: production, Pi j, diffusion, di j , dissipation, εi j,

and a term known as the “pressure-strain” or “redistribution”, φi j . The production term is calcu-

lated in its exact form and does not require modelling. The effect of the pressure-strain term is to

redistribute energy among the normal stresses whilst usually acting as a sink for the shear stresses.

Because φi j has zero trace, it does not appear in the turbulent kinetic energy equation used in simpler

two-equation models (which is derived from the transport equation for u iu j). In addition to improved

modelling of flow curvature and Reynolds stress anisotropy, DSM’s are able to account for the history

of the Reynolds stresses, which is important in rapidly developing flows. For example, in an initially

anisotropic turbulence field which has its mean strain-rate suddenly set to zero, two-equation models

predict an instantaneous return to isotropy whereas experiments (and differential stress models) pre-

dict a more gradual change. A review of recent developments in differential stress models is given by

leading researchers in [25]. Whilst these models offer the greatest sophistication of current one-point

closures, they are costly to use, requiring the solution in 3-D of 11 transport equations rather than the

6 used by two-equation models. Moreover, the models are complex to implement and computations

can sometimes suffer from numerical instability.

Non-linear Eddy-Viscosity Models (NLEVMs) have been developed as a compromise between

the simple low-cost linear schemes and the more accurate but expensive DSMs. In a NLEVM, the

Reynolds stress is calculated from an algebraic expression which includes linear, quadratic and some-

times higher-order combinations of strain-rate (S) and vorticity (Ω). A number of approaches have

been adopted in developing NLEVMs. The first method takes a Differential Stress Model and simpli-

fies the transport equations for the Reynolds stress using the “weak equilibrium assumption” [26]:

D
Dt

uiu j =
uiu j

k
Dk
Dt

+ k
D
Dt

(
uiu j

k

)

︸ ︷︷ ︸
(1.7)

where D/Dt represents combined convection and diffusion and the underbraced term is assumed zero.
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This results in an implicit Algebraic Stress Model (ASM) in which the Reynolds stress appears on

both sides of an expression involving non-linear functions of strain and vorticity. Different methods

have been used to obtain an explicit formula (in the form uiu j = f (S,Ω)), see for example Gatski &

Speziale [27] or Apsley & Leschziner [28]. An alternative more pragmatic approach to developing

NLEVMs is simply to introduce higher-order combinations of S and Ω into the eddy-viscosity model

and then tune the constants for a wide range of flows. This approach was formalised by Pope [29]

and has been used by, among others, Craft et al. [30] and Speziale [31]. Some further approaches to

deriving NLEVM’s have involved Renormalization-Group (RNG) theory [32] and Direct Interaction

Approximation (DIA) methods [33]. Quadratic combinations of S and Ω are necessary in NLEVMs

to account for Reynolds stress anisotropy while swirl and curvature effects are only accounted for

by cubic terms (for details, see Suga [34]). Some models have also incorporated constraints such as

realizability, for instance Speziale’s quadratic model [31] which ensures that turbulent kinetic energy

is always positive. In general, NLEVM’s solve transport equations for two or three turbulence pa-

rameters and so, in terms of computing costs, these models are marginally more expensive than linear

two-equation EVMs but far less than DSMs. NLEVMs are unable to account accurately for history

effects (since convection and diffusion of the individual Reynolds stress components are not modelled

directly) but nevertheless these models have been shown to perform reasonably well in a wide variety

of complex flows [34, 35].

Finally, it should be mentioned that different RANS turbulence models can be combined to make

two-layer or zonal schemes. Typically a two-equation or higher-order model is used in the bulk of

the flow while the near-wall region is treated with a simpler, usually algebraic or one-equation, low-

Reynolds-number model. For example, the zonal model of Iacovides & Launder [36] employed a

k− ε model in the high-Re region and a van Driest mixing-length model close to walls to study the

flow around pipe bends. The two-layer approach can offer savings in computing times compared to

integrating a high-order model all the way to the wall surface, but there can be problems coupling the

two layers in complex flows and results depend upon the location of the boundary.

1.3 Near-Wall Flow Phenomena

There is a vast amount of literature on the statistics and structure of turbulence near solid boundaries

(see, for example, the review article of Moin & Mahesh [3]). The object of the present discussion is

not to review this literature but merely to identify what it is about turbulent flow in the near-wall region

that causes problems for turbulence modelling and to introduce some basic terminology describing the

near-wall flow. The section begins by deriving the universal “laws of the wall”, which describe the

near-wall velocity and temperature profiles for flows close to equilibrium, after which some analytical

and DNS results for the behaviour of Reynolds stresses near walls are discussed. The distance from

the wall in these discussions is specified in terms of wall units or y+ values. This is defined for simple
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shear flows, where U = U(y), as follows:

y+ =
Uτy

ν
Uτ =

√
τwall

ρ
(1.8)

where Uτ is the “friction velocity”, τwall is the wall shear stress and y is the distance from the wall.

Law of the Wall for Velocity

In a zero-pressure-gradient fully-developed Couette flow in which there are no streamwise gradients of

velocity or stress, the wall-normal velocity is zero from continuity and the equation for the streamwise

mean U -velocity simplifies to:
∂
∂y

(
µ

∂U
∂y

−ρuv

)
= 0 (1.9)

Integrating this using the wall boundary conditions −ρuv = 0 and τ = µ∂U/∂y = τwall at y = 0, one

obtains:

µ
∂U
∂y

−ρuv = τwall (1.10)

In the thin region immediately adjacent to the wall (y+ < 5), termed the “viscous sublayer”, the

Reynolds stress (ρuv) is negligible in comparison to the viscous stress (µ∂U/∂y). Integrating Equation

(1.10) with (ρuv = 0) leads to an expression in which the U -velocity is a linear function of the wall-

normal distance. This is often written:

U+ = y+ (1.11)

where U+ is the dimensionless streamwise velocity given by U + = U/Uτ. As one moves further

away from the wall, viscous effects diminish and the turbulent stress dominates. In the fully turbulent

region, from y+ ≈ 30 to y/δ ≈ 0.1 (where δ is the boundary layer thickness), viscous stresses are

negligible in comparison to the turbulent stresses and Equation (1.10) simplifies to:

−ρuv = τwall (1.12)

Applying the mixing length hypothesis:

−ρuv = ρl2
m

(
∂U
∂y

)2

(1.13)

assuming an equilibrium length scale, lm = κy, and integrating, leads to the following expression:

U+ =
1
κ

lny+ +C (1.14)
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The above formula is known as the “log-law”. The two constants κ and C are usually assigned the

following values for a smooth wall:

κ = 0.41 C = 5.0

However, values of κ and C given in turbulence modelling literature vary by approximately ±8%.

The linear and log-layers described by Equations (1.11) and (1.14) are shown in Figure 1.1 on semi-

logarithmic axes. Between the two regions is a buffer zone (from approximately y+ = 5 to 30) where

the turbulence levels increase and viscous effects diminish with wall-distance. The combined linear

and log-laws are often collectively termed the “law of the wall” and the whole region from the wall

up to the outer edge of the log-law is called the “inner-layer”. Beyond this region, further from

the wall, is the “outer layer”. Here the velocity-defect law is held to apply. This states that the

difference between the mean velocity and the free-stream velocity normalized by the friction velocity,

(U∞ −U)/Uτ, is a function only of dimensionless wall-distance (y/δ) and is independent of the fluid

properties. However, unlike the linear and log-laws, the velocity in the outer region is flow dependent

and a “universal” defect law does not exist.

Millikan [37] used an alternative approach to derive the law of the wall where the velocity profile

in the viscous sublayer was assumed to be solely a function of the wall-distance (y), the wall shear

stress (τwall) and fluid properties (ρ and µ), and not directly dependent upon the boundary layer

thickness (δ) or the free-stream velocity, (U∞). Dimensional arguments were then used to arrive

at Equation (1.11). A similar approach can be taken in the log-layer, where the flow is considered to

be independent of fluid properties, U∞ and δ. The log-law has also recently been derived using Rapid

Distortion Theory (RDT) [38].

The existence of the law of the wall has been confirmed by numerous experiments and by DNS

simulations of zero pressure-gradient boundary layers [21] and channel flows [39, 40]. The discrep-

ancy in the values of the constants used in the log-law may be because of low-Reynolds-number

effects, experimental “noise” or perhaps because the log-law is being assumed to apply over too wide

a portion of the flow. Both Spalart [21] and Moser et al. [40] when presenting their DNS data discuss

the stringent criteria for a true log-law region. Moser et al. also assess some claims [41] that in fact

the log-law is more correctly a power-law profile. Bradshaw & Huang [42] discuss in some detail the

performance of the log-law in boundary layers in which there are strong streamwise pressure gradi-

ents. They argue that simply modifying the constants to be functions of the local shear stress (τ) or its

gradient (∂τ/∂y) is unlikely to produce a generally-applicable wall model, although they also note that

the log-law appears “tenacious” in providing reasonable results for non-equilibrium flows in which

its underlying assumptions are no longer valid. Some authors have employed a more sophisticated

characterization of the various regions than the simple approach presented above. For example Pope

[5] identifies in total seven overlapping regions.
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Figure 1.1: Schematic "universal" velocity distribution for a smooth wall (boundary values shown are
approximate).

Law of the Wall for Temperature

Following on from the law of the wall for velocity there is a similar law for temperature. The temper-

ature, T , is made dimensionless by the “friction” temperature, Tτ, and wall temperature, Twall :

T+ =
(Twall −T )

Tτ
Tτ =

qwall

ρcpUτ
(1.15)

In the viscous-dominated sublayer, the relationship between T + and y+ is given by Fourier’s heat-

conduction law:

qwall = −λ
∂T
∂y

(1.16)

which can be reformulated as:

T+ = y+σ (1.17)

where σ is the molecular Prandtl number (σ = µcp/λ) – the ratio of a fluid’s ability to diffuse momen-

tum to its ability to diffuse heat. Further from the wall a log-law for temperature can be derived of the

following form (see Cebeci & Bradshaw[43]):

T + =
1
κh

ln
(
y+
)
+ ch (1.18)

where the constants are given by:

κh = κ/σt ch =
1
κh

ln(E)+P

(
σ
σt

)
(1.19)
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and the Jayatilleke [44] P-function is given by:

P

(
σ
σt

)
= 9.24

[(
σ
σt

)3/4

−1

]{
1+0.28exp

[
−0.007

(
σ
σt

)]}
(1.20)

The quantity σt is the turbulent Prandtl number (defined in analogy to the molecular Prandtl number

with σt = µt cp/λt ). Usually, the log-law for temperature is expressed:

T+ = σt

[
U+ +P

(
σ
σt

)]
(1.21)

The temperature log-law is applicable in near-equilibrium flows from y+σ ≈ 50 to y/δt ≈ 0.1, where

δt is the thickness of the thermal boundary layer. Compared to the velocity-law, the log-law for

temperature appears more sensitive to streamwise pressure gradients [42].

Near-Wall Reynolds Stress Behaviour

Immediately adjacent to the wall, the behaviour of the Reynolds stresses, k and ε can be obtained from

the asymptotic behaviour of the fluctuating velocity components, as follows:

u2 = a2
1y2 +2a1a2y3 +

(
a2

2 +2a1a3

)
y4 + ... (1.22)

v2 = b2
2y4 + ... (1.23)

w2 = c2
1y2 +2c1c2y3 +

(
c2

2 +2c1c3

)
y4 + ... (1.24)

uv = a1b2y3 +
(
a1b3 +a2b2

)
y4 + ... (1.25)

where the a’s, b’s and c’s are functions of x, z and time but not of y. Due to continuity, the wall-normal

fluctuating velocity component, v, dies out faster than the wall-parallel components, u and w, hence

the wall-normal stress v2 increases with y4 whilst the two wall-parallel components u2 and w2 increase

as y2. The turbulent kinetic energy, k, is given by:

k =
1
2

(
u2 + v2 +w2

)

=
1
2

[(
a2

1 + c2
1

)
y2 +2(a1a2 + c1c2)y3 + ...

]
(1.26)

and the dissipation rate, ε:

ε = ν
(

∂u
∂y

)2

+ν
(

∂v
∂y

)2

+ν
(

∂w
∂y

)2

= ν
[(

a2
1 + c2

1

)
+4(a1a2 + c1c2)y+ ...

]
(1.27)
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The dissipation rate is therefore finite at the wall (ε = ν
(

a2
1 + c2

1

)
when y = 0 ). Referring back to the

expression for k at the wall (Equation 1.26), the first-order terms result in the following expression for

ε in terms of k:

ε = ν
(

a2
1 + c2

1

)
=

2νk
y2 (1.28)

At the wall surface, the dissipation rate of turbulence energy is balanced by viscous diffusion of kinetic

energy towards the wall, which can be expressed:

ν
∂2k
∂y2 = ν

∂2
[(

a2
1 + c2

1

)
y2/2

]

∂y2 =
2νk
y2 (1.29)

An approximate profile for the near-wall turbulent kinetic energy production, Pk, in a zero pressure-

gradient boundary layer can also be identified, as follows: in the log-layer, the shear stress is approx-

imately constant across the near-wall region and since the strain-rate decreases as ∂U/∂y ∝ y−1, the

production-rate of kinetic energy (Pk = ρuv∂U/∂y) must be decreasing as the distance from the wall

increases. Since uv is zero at the wall surface this means that the production-rate must reach a maxi-

mum value at some location between the wall and the log-layer. This inflection point occurs when:

∂
∂y

(
ρuv

∂U
∂y

)
= 0 (1.30)

Expanding this and substituting in Equation (1.10) it is possible to show that Pk reaches a maximum

value when:

µ
∂U
∂y

= −ρuv (1.31)

i.e. when the viscous and turbulent stresses are equal. This point occurs in the buffer zone, between

the linear and logarithmic regions identified above.

Detailed near-wall profiles of the Reynolds stresses, k and ε, have been obtained by DNS studies

[21, 39, 40]. Profiles of the turbulence intensities, u
′
, v

′
and w

′
from Moser et al. [40] for a channel

flow at three different Reynolds numbers are reproduced in Figure 1.2. The largest component, the

streamwise u
′
, reaches a peak at approximately y+ = 13 before decreasing sharply towards the wall.

The anisotropy between the three normal Reynolds stresses is also shown. Figure 1.3, taken from

Mansour et al. [45], shows the budget of the turbulent kinetic energy equation in a channel flow for

y+ < 150. Away from the wall (y+ > 30) the turbulence is well approximated by the assumption of lo-

cal equilbrium (Pk = ρε). As the wall is approached (y+ < 30), viscous and turbulent diffusion terms

increase and finally at the wall surface there is a balance between dissipation and viscous diffusion of

k (as expressed above by Equations 1.28 and 1.29).

In order to discern the rapid changes in turbulence parameters across the near-wall region, as

shown by the DNS results, it is clearly necessary to have a refined near-wall grid with a number of

nodes within the viscous sublayer. The alternative would be to use empirically-based shape functions

to represent the changes in velocity, temperature and turbulence parameters near the wall. In the
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Figure 1.2: DNS predictions of the turbulence intensity across a fully-developed channel flow from
Moser et al. [40] in wall coordinates (left) and global coordinates (right). Profiles for three Reynolds
numbers are shown: Reτ = Uτδ/ν = 590, 395 and 180 (where Uτ is the friction velocity and δ the
channel half-width). The peak RMS velocities generally increase with Reynolds number.

following section the implications of near-wall grid refinement are discussed along with the issue of

computational costs and the need for effective wall functions.

1.4 Wall Functions vs. Low-Re Models

In RANS simulations of turbulent flows, there are two main approaches to the treatment of the near-

wall region: the low-Reynolds-number approach and the wall-function approach. In the low-Re ap-

proach, specially formulated low-Reynolds-number turbulence transport equations are solved across

the near-wall region. These incorporate damping functions that account for the increasing influence

of molecular viscosity and the preferential damping of wall-normal fluctuating velocity components

as the wall is approached. A very fine grid has to be employed6 in order to track the rapid changes

in the turbulence parameters near the wall, with typically 10 nodes within y+ = 10 and the near-wall

node below y+ = 1. Provided that the turbulence model accounts correctly for the flow behaviour,

this approach offers the greater accuracy of the two methods. However, the highly elongated cells

in the near-wall region slow numerical convergence, CPU costs are high and computer storage re-

quirements are large. The low-Re approach is therefore not routinely used for large and complex

industrially-relevant CFD simulations.

The popular alternative is the high-Re approach which uses a coarse near-wall mesh so that the

cell adjacent to the wall includes all of the viscous sublayer and part of the fully-turbulent region

of the boundary layer (typically at the near-wall node 30 < y+ < 300). Transport equations solved

in the main (high-Re) region of the flow domain therefore neglect the effects of molecular viscosity.

6To obtain an idea of the physical thickness of the viscous sublayer: for flow over a flat plate at a distance of one
metre from the leading edge with a flow speed of 10ms−1 (21mph) the friction velocity is uτ ≈ 0.44ms−1 and the physical
wall-normal height corresponding to y+ = 5 is: yn = 0.17mm. (c.f. Rautaheimo & Siikonen [46]).
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Figure 1.3: Channel flow turbulent kinetic energy equation budget taken from the DNS of Mansour
et al. [45] for a Reynolds number, Re = Ucδ/ν = 3,300 (where Uc is the centreline velocity and
δ the channel half-width). Pk = production; Tk = turbulent transport; Dk = viscous diffusion; εk =
dissipation rate; Πk = velocity pressure-gradient term.

In the cells adjacent to solid boundaries, empirically-based expressions (so-called “wall functions”)

are employed to obtain quantities such as wall shear stress which account for the influence of low-

Reynolds-number effects on the flow near the wall. This approach is economical, both in computer

storage and CPU time, with computations at least an order-of-magnitude faster than with the low-Re

approach. However, the empirical profiles of velocity, turbulence parameters and temperature which

are used in standard wall functions are only applicable in very simple near-wall flows and can lead to

major errors in complex, non-equilibrium flows. In addition, the near-wall grid cannot be successively

refined, since it is usually required to keep the near-wall node within the log-law region, and results

can be sensitive to the size of the wall-adjacent cell.

A number of attempts have been made over the last 30 years to generalize wall functions for non-

equilibrium flows. In the most basic wall function, the “universal” log-laws described in Section 1.3

are adopted for the wall-parallel velocity and temperature. Values of the turbulence parameters are

specified at the near-wall node, based on local-equilibrium assumptions7 . One of the first improve-

ments upon this treatment, proposed by Launder & Spalding [48], was to replace the wall shear stress,

τwall , in the velocity log-law with the turbulent kinetic energy, k (scaling the velocity with k1/2 instead

of the “friction velocity”, (τwall/ρ)1/2, is crucial in flows involving separation, stagnation and reat-

tachment, where the wall shear stress vanishes). The turbulent kinetic energy equation in the near-wall

cell was solved using cell-averaged production and dissipation rates which were calculated by assum-

ing constant shear stress and a linear turbulent length scale variation
(
k3/2/ε ∝ y

)
across the near-wall

7For instance: k = U2
τ /c1/2

µ and ε = U3
τ /κy, based on an assumed constant shear stress

(
τ = −ρuv = c1/2

µ k
)

and equi-

librium length scale l = k3/2/ε = cly (c.f. Grotjans & Menter [47]).



16 CHAPTER 1. Introduction & Literature Survey

cell. However, even in fairly simple flows (fully-developed channel or pipe flow) the shear stress is not

constant. Chieng & Launder [49] therefore proposed a wall function in which the near-wall cell was

divided into two layers: the viscous sublayer and the fully turbulent region. In the viscous sublayer

the shear stress, ρuv, was assumed to be zero and the turbulent kinetic energy to vary quadratically

with wall distance, whilst in the fully turbulent region both ρuv and k were assumed to vary linearly.

Since at the wall the dissipation rate is given by ε = 2ν
(
∂k1/2/∂y

)2
and k varies quadratically, ε was

assumed to take a uniform value in the viscous sublayer. In the fully turbulent region, ε was obtained

from assuming an equilibrium turbulence length scale variation, k3/2/ε = cly (these profiles are dis-

cussed in detail in Chapter 2, see in particular Figures 2.2 and 2.3). The k-equation was solved in

the near-wall cell using cell-averaged production and dissipation rates, and the dissipation rate, ε, was

specified at the near-wall node. In order to locate the boundary of the viscous sublayer, the Chieng &

Launder wall function assumed that the turbulence Reynolds number at the edge of the sublayer was

Rv = yvk1/2/ν = 20. For flows involving strong pressure gradients where the shear stress falls rapidly

with wall distance, a constant value of Rv = 20 under-predicts the actual width of the sublayer. John-

son & Launder [50] therefore introduced a variable viscous sublayer thickness, based on the ratio of

the diffusion of k towards the wall to the rate of dissipation within the sublayer. More recently, Ciofalo

& Collins [51] proposed making the sublayer thickness a function of the local turbulence intensity. A

review of the Launder & Spalding, Chieng & Launder and Johnson & Launder wall functions can be

found in Acharya et al. [52] for flow past a surface-mounted 2-D rib. Performance characteristics of

the three treatments were mixed and depended upon the turbulence model used (k−ε, algebraic stress

or non-linear k− ε).

Two wall functions were proposed by Amano [53]. In the first, similar assumptions were adopted

to the earlier treatments, but instead of solving only the k-equation in the near wall cell and prescrib-

ing the nodal value of ε based on local-equilibrium assumptions, Amano suggested solving transport

equations for both k and ε in the near-wall cell using cell-averaged source and sink terms. The second

wall function proposed by Amano used a three-layer model, in which different profiles for k and shear

stress were used in the viscous sublayer, buffer layer and fully turbulent region. Better results were

obtained using the three-layer model in an abrupt pipe expansion at various Reynolds numbers. A

further proposal by Grotjans & Menter [47] assumed that the location of the wall, as specified by the

user, was treated as the edge of the viscous sublayer. This enabled unlimited near-wall grid refine-

ment. Wilcox [14, 54] presented two wall functions for the k−ω model. The first was analogous to

a simple k− ε wall function but the second included pressure-gradient terms which Wilcox suggested

were necessary in order to obtain grid-independent results for flows with non-zero pressure gradients.

Viegas & Rubesin [55] extended the Chieng & Launder wall function for compressible flow problems

and, later, Viegas et al. [56] extended the treatment to enable greater flexibility of the near-wall node

location: an approximate solution of the energy equation was obtained in the near-wall cell to deter-

mine the local temperature and density profiles and an additional power-law term was added into the

logarithmic velocity profile expression to account for wake effects. Results using Viegas et al. wall
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function were, for the most part, in good agreement with low-Re model solutions in a number of

transonic and supersonic flows involving boundary-layer separation and reattachment.

All of the above-mentioned treatments rely upon an assumed semi-logarithmic velocity and tem-

perature distribution in the near-wall cell. To avoid these limitations, Smith [57] developed a novel

wall function in conjunction with a two-equation k − kl model. The wall function used simplified

boundary-layer transport equations for momentum, turbulent kinetic energy and internal energy, ne-

glecting convection and assuming a parabolic turbulent length scale profile. These transport equations

were solved numerically with two or three iterations per main iteration of the solution process. The

approach was shown to perform well in a flat-plate flow, transonic and supersonic flows, and a hy-

personic boundary layer flow involving separation and heat transfer. Boyer & Laurence [58] also

developed a wall function which avoided assumptions of local equilibrium. Their approach used

shape functions to represent the velocity, k and ε distribution across the near-wall cell. These shape

functions consisted of the Reichard law for velocity and profiles to match channel-flow DNS data for

turbulence parameters, combined with four wall scaling factors. The scaling factors were evaluated

by solving equations for the mean-flow energy and turbulent kinetic energy, incorporating terms for

pressure gradient, production, destruction, diffusion and convection. The wall function was shown to

reproduce channel flow profiles for a range of near-wall cell sizes (2.5 < y+ < 100) but the approach

has yet to be applied in more complex flows.

A rather different scheme to traditional wall functions was developed in the mid-eighties at UMIST.

The Parabolic SubLayer (PSL) approach [59, 60], employed a low-Reynolds-number model using a

fine near-wall grid but assumed the static pressure distribution to remain constant in a thin layer

adjacent to the wall. The pressure-correction algorithm was not solved in the near-wall cells and in-

stead the wall-normal velocity was calculated from continuity. Significant savings were reported in

computing times compared to full low-Re solutions and results were encouraging but the approach

encountered difficulties in complex geometries with the calculation of velocity in corner cells.

Efforts at UMIST have recently been focussed on two new and independent wall treatments. These

share some features of the numerical wall function of Smith, described above, and the LES wall

function of Balaras et al. (see below). The first treatment is based on the analytical integration of

the momentum and energy equations, accounting for the effects of convection, pressure gradient and

buoyancy forces [61]. Inevitably, fairly simple prescriptions of turbulent viscosity have to be made

to allow an analytical integration, but encouraging results have been obtained for forced and mixed

convection flows in pipes and an opposed-jet flow involving buoyancy effects. The second treatment

is the subject of this thesis and is based on the efficient one-dimensional numerical integration of

simplified low-Re model equations across an embedded grid within the near-wall cell.

LES Wall Functions

In LES, as in RANS, there have been different approaches to modelling the near-wall flow. The most

accurate approach (which Spalart [6] refers to as “Quasi-DNS”) uses fine grid-spacing in all three
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coordinate directions to resolve the near-wall turbulent streaks. This involves huge computational

costs and cannot be used routinely in LES calculations. Most calculations therefore employ a coarser

grid and calculate the wall shear stress for the near wall cell using a variant of the log-law (see for

example [62]). A notable exception is the wall function of Balaras et al. [63] which is mentioned

here as it shares some similarities to the RANS treatment presented in this thesis. In the Balaras

et al. wall function, an embedded grid is defined between the near-wall node and the wall. Simpli-

fied boundary-layer-type transport equations for the wall-parallel momentum are solved numerically

across the embedded grid, using a mixing-length model for the eddy-viscosity, with modified van Dri-

est damping. The velocity profiles obtained across the embedded grid are used to provide the main

LES calculation with values of the instantaneous wall shear stress. Promising results were obtained

by Balaras et al. using this treatment for plane channel, square duct and rotating channel flows with a

modest computational overhead of 10-15% compared to existing log-law treatments.

1.5 Study Objectives

The objective of the work presented in this thesis is to develop and test a new wall function for flow

calculations using RANS turbulence models. The ideal properties of the wall function are as follows:

• Accuracy: the wall function should be practically as accurate as a low-Reynolds-number model.

One cannot expect it to improve upon low-Re model predictions without embodying more

physics or empiricism.

• Computational Speed: current wall functions decrease the computing time by roughly an

order-of-magnitude compared to low-Re calculations8 . There needs to be a significant time

advantage in using the new wall function over low-Re treatments although probably the best

one could hope for would be to equal the current status quo.

• Robustness: the wall function should not impair the numerical stability of the calculation.

• Flexibility: bearing in mind the wide variety of flows in which industrial users are interested,

the wall function should be able to be adapted easily to work with different turbulence models,

to include heat and mass transfer effects and to work in complex geometry.

• Ease of Use: it should be conceptually easy to understand and simple to implement. It should

also follow as closely as possible the format of existing wall functions to make it straight-

forward to switch from standard wall functions to the new treatment.

8The saving in computing time one can achieve in switching from a low-Re model approach to using wall functions
depends upon many factors. The most significant of these is the number of walls compared to the domain size. The
stated figure of an “order-of-magnitude” decrease in computing time is based on a flow involving a single wall, such as the
impinging jet flow, discussed later. In flows involving a larger number of walls for the same domain size one would expect
to see a greater decrease in computing time.
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• Validation: It is easy to make coding mistakes and, if possible, there should be simple routes

to validating the wall function code.

In order to test the performance of the new wall function, a variety of flows are studied: channel,

impinging jet, spinning disc and simplified car-body flows. The final flow around the “Ahmed” car

body is a demanding test-case both in terms of implementation and performance: the wall function

has to be coded to suit a three-dimensional non-orthogonal multiblock grid arrangement while the

flow involves impingement, strong streamline curvature, separation and possibly reattachment. The

Ahmed body flow is recognized as an important test-case and has been the subject of two ERCOFTAC

workshops9 .

In each of the flows examined, the performance of the new wall function is compared to that of

standard wall functions and low-Re model treatments (with the exception that the Ahmed body is not

considered using low-Re models because the computing resources for such a calculation are currently

unavailable). Computing times are also compared for each of the treatments in each of the flows.

A secondary objective of the current work is to examine the performance of the two-equation

NLEVM of Craft et al. [30]. This has previously been tested in impinging flows by Suga [34] but

for slightly different geometry. Robinson [35] also tested the NLEVM in a variety of complex flows,

including the Ahmed body flow, although his study did not employ the new wall function.

1.6 Outline of Thesis

The RANS equations and “standard” wall functions used in the numerical simulations are first pre-

sented in Chapter 2. Following this, in Chapter 3, the main features of the two CFD codes used in

the current study, TEAM and STREAM, are presented. Chapter 4 introduces the new subgrid-based

wall function. The assumptions used in its derivations are first presented, followed by an overview of

the transport equations, its implementation and finally some comments on the validation of the wall

function in a simple channel flow. The following three chapters then present the test cases to which the

new wall function has been applied: the impinging jet, the spinning disc and the Ahmed body flows.

Each of these chapters begins with an introduction and a review of previous simulations, before going

on to present results and comparisons of the new wall function’s performance. The main findings of

the thesis are summarized in Chapter 8.

A significant proportion of this thesis consists of appendices. The first appendix presents the

full set of transport equations used in axisymmetric swirling flow. This is followed by an appendix

giving a general introduction to non-orthogonal curvilinear coordinates. This introduction has been

included since most undergraduate and even post-graduate courses in fluid mechanics avoid the com-

plexity of covariant and contravariant tensor analysis, which is used to derive the RANS equations in

9the 9th ERCOFTAC-IAHR-COST Workshop on Refined Turbulence Modelling, Darmstadt, Germany, October 4-5,
2001 and 10th ERCOFTAC-IAHR-QNET/CFD Workshop on Refined Turbulence Modelling, Poitiers, France, October
10-11, 2002.



20 CHAPTER 1. Introduction & Literature Survey

non-orthogonal curvilinear coordinates. It is the author’s experience that textbooks on the subject are

also not, in general, accessible and different notation is often used in different texts. After this intro-

duction, Appendix C presents the RANS equations in curvilinear coordinates, where velocity vectors

are aligned to the curvilinear coordinate axes. The UMIST-N wall function transport equations in

curvilinear coordinates are then presented in Appendix D. Appendix E describes the implementation

of the UMIST-N wall function in the STREAM code. Appendix F presents the main-grid transport

equations solved in STREAM. Finally, Appendix G discusses a number of routes which have been

investigated in the course of developing the new wall function which, for one reason or another, have

been found not to work. This information has been included in order to fully document the work, to

help explain the current choice of options used in the wall function and to serve as a guide to its future

development.

Figures have been included in amongst the text where possible so that the reader does not have to

continually flick between pages. However, most computational grids and results have been placed in

a Figures section at the end of the thesis to avoid the text being split over many pages.



Chapter 2

Mathematical Models

The following sections present the equations which are used in the numerical simulations documented

in this thesis. For clarity, equations have been presented in Cartesian tensor notation. Equivalent

expressions for axisymmetric swirling flow and for a more general non-orthogonal coordinate system

are provided in Appendices A and C.

2.1 Reynolds-Averaged Navier-Stokes Equations

The Reynolds-averaged expression for the conservation of mass, or as it is commonly termed the

continuity equation, is expressed in Cartesian tensors as follows:

∂ρ
∂t

+
∂

∂x j
(ρU j) = 0 (2.1)

where upper-case U j is the mean velocity vector which has components (U,V,W ) in the Cartesian

(x,y,z) directions. Summation is implied by repeated indices and so the above expression can be

expanded:
∂ρ
∂t

+
∂
∂x

(ρU)+
∂
∂y

(ρV )+
∂
∂z

(ρW ) = 0 (2.2)

Equation (2.1) can also be expanded, using the product rule:

∂ρ
∂t︸︷︷︸

+ρ
∂U j

∂x j
+U j

∂ρ
∂x j︸ ︷︷ ︸

= 0 (2.3)

For steady flows that do not involve compressibility effects, the two underbraced terms in the above

expression are zero and continuity is written simply:

∂U j

∂x j
= 0 (2.4)

21
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The above expression can also be employed for steady buoyancy-affected flows (provided they do not

involve shock-waves) where it is assumed that density-gradients (∂ρ/∂x j) are small in comparison

with strain-rates (∂U j/∂x j).

The RANS equation for transport of momentum can be written in Cartesian tensors as follows:

∂
∂t

(ρUi)+
∂

∂x j
(ρUiU j) = − ∂P

∂xi
+

∂τi j

∂x j
(2.5)

where P is the mean pressure and the stress tensor, τi j , is given by:

τi j = µ


∂Ui

∂x j
+

∂U j

∂xi
− 2

3
δi j

∂Uk

∂xk︸ ︷︷ ︸


−ρuiu j (2.6)

The term uiu j is the Reynolds stress tensor and δi j the Kronecker delta which is zero if i 6= j and unity

if i = j. The underbraced term in Equation (2.6) makes the trace1 of the viscous stress tensor zero.

In its most general form, the Boussinesq Eddy-Viscosity Model (EVM) can be written in Cartesian

tensors:

−ρuiu j = µt


∂Ui

∂x j
+

∂U j

∂xi
− 2

3
δi j

∂Uk

∂xk︸ ︷︷ ︸


− 2

3
δi jρk
︸ ︷︷ ︸

(2.8)

where k is the turbulent kinetic energy and the two underbraced terms are included to satisfy the trace

condition, uiui = 2k.

2.2 Linear k− ε Model

In the low-Reynolds-number linear k−ε model of Launder & Sharma, the eddy-viscosity is calculated

from:

µt = ρcµ fµ
k2

ε̃
(2.9)

where cµ is assumed constant (cµ = 0.09), the damping function fµ is given by:

fµ = exp

[
−3.4

(
1+ R̃t/50

)2

]
(2.10)

1The trace of the expression is obtained by setting i = j and summing over repeated indices. The trace of the viscous
part of the stress tensor is given by:

µ

(
∂Ui

∂xi
+

∂Ui

∂xi
−2

∂Uk

∂xk

)
= 0 (2.7)

Tensors with zero trace are also called “deviatoric”. If the flow is incompressible the underbraced term in Equation (2.6) is
zero.
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and the turbulence Reynolds number, R̃t , is defined by:

R̃t =
k1/2l

ν
=

k2

νε̃
(2.11)

The function fµ accounts for both the true viscous damping at low Reynolds number and the prefer-

ential damping of the wall-normal fluctuations as the wall is approached.

Transport equations are solved for the turbulent kinetic energy, k, and isotropic dissipation rate,

ε̃. The exact transport equation for k can be derived from its definition (k = u iui/2), using the trans-

port equation for the Reynolds stress tensor, uiu j and approximating diffusion terms in the resulting

expression by an eddy-diffusivity model. This gives the following expression:

∂
∂t

(ρk)+
∂

∂x j
(ρU jk) =

∂
∂x j

[(
µ+

µt

σk

)
∂k
∂x j

]
+Pk −ρε (2.12)

The terms on the left-hand side represent convection and those on the right are diffusion, production

and dissipation, respectively (reading left to right). The constant σk is the effective Prandtl number for

the diffusion of kinetic energy (taken as σk = 1.0 in the Launder-Sharma model) and the production

rate of kinetic energy, Pk, is calculated from:

Pk = −ρuiu j
∂Ui

∂x j
(2.13)

Unlike turbulent kinetic energy, the dissipation rate does not fall to zero at the wall. Instead ε takes a

value at the wall which balances the rate of diffusion of turbulent kinetic energy towards the wall (as

discussed in Section 1.3). For numerical convenience, rather than solve an equation for ε, a transport

equation is solved for the isotropic dissipation rate (ε̃) which, by definition, falls to zero on the wall

surface (see Jones & Launder [12]). The dissipation rate term appearing in the k-equation is the total

dissipation rate, defined as:

ε = ε̃+2ν

(
∂k1/2

∂x j

)2

(2.14)

The modelled equation for the isotropic dissipation rate follows a similar format to the k-equation,

being composed of convection, diffusion, production and dissipation components:

∂
∂t

(ρε̃)+
∂

∂x j
(ρU j ε̃) =

∂
∂x j

[(
µ+

µt

σε

)
∂ε̃
∂x j

]
+ cε1 f1Pk

ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (2.15)

The final two terms on the right-hand-side of the above equation are the Yap correction, Yc, and a

low-Reynolds-number turbulence damping term, Pε3 (sometimes denoted E). The Yap correction [64]

is used to reduce the departure of the turbulence length scale
(
l = k3/2/ε

)
from the local equilibrium

length scale (le = 2.55y). It was developed initially in response to studies of impinging jets and pipe

expansions that showed that the linear k− ε model overpredicted heat transfer near the stagnation and
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reattachment points (see, for example, [65]). The standard Yap correction is given by:

Yc = max






0.83

(
k3/2/ε̃
2.55y

−1

)(
k3/2/ε̃
2.55y

)2
ε̃2

k


 ,0



 (2.16)

where y is the wall-normal distance. The above expression can introduce problems in certain flows

with complex geometry where it is difficult to define a wall-normal distance. For this reason, Iacovides

& Raisee [66] introduced an alternative correction based on the gradient of the length scale (a so-called

differential Yap correction, Ydc) which is independent of wall distance. This takes the following form:

Ydc = cw
ε̃2

k
max

[
F (F +1)2 ,0

]
(2.17)

where:

F =
1
cl

[(
∂l
∂x j

∂l
∂x j

)1/2

−dledy

]
(2.18)

dledy = cl
[
1− exp

(
−BεR̃t

)]
+Bεcl R̃t exp

(
−BεR̃t

)
(2.19)

cl Bε cw

2.55 0.1069 0.83

The cw constant was later modified by Craft et al. [67] to reduce the degree of correction in regions

of high straining and to improve numerical stability. In this more recent form, cw is made a function

of the strain-rate and vorticity invariants and turbulence Reynolds number, as follows:

cw =
0.83min(1, R̃t/5)[

0.8+0.7(η′/3.33)4 exp(−R̃t/12.5)
] (2.20)

where:

η′ = max
(
S̃′,Ω̃′) (2.21)

S̃′ = max

(
k
ε̃
,

√
ν
ε

)√
1
2

Si jSi j (2.22)

Ω̃′ = max

(
k
ε̃
,

√
ν
ε

)√
1
2

Ωi jΩi j (2.23)

The effect of the Yap correction is far greater with low-Reynolds-number formulations than with

standard wall functions formulations, but the effect is still measurable with the latter (see discussion

in Chapter 5, in particular Figures 5.31 and 5.32). Both “standard” and differential Yap corrections

are tested in this thesis, the latter using the variable cw of Craft et al. (Equation 2.20).

The gradient production source term, Pε3, is included in the ε̃-equation to obtain the correct near-

wall distribution of k [12]. The expression for Pε3 and the remaining constants and damping functions
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used in the ε̃-equation are as follows:

Pε3 = 2µνt

(
∂2Ui

∂x j∂xk

)2

(2.24)

f1 = 1.0 (2.25)

f2 = 1.0−0.3exp
(
R̃2

t

)
(2.26)

cε1 cε2 σε

1.44 1.92 1.3

2.3 Non-Linear k− ε Model

In the non-linear eddy-viscosity model (NLEVM) of Craft et al. [30], additional quadratic and cubic

functions of strain and vorticity are introduced into the equation for the Reynolds stress. The consti-

tutive equation for the Reynolds stress anisotropy, ai j , defined as the ratio of the deviatoric Reynolds

stress to the turbulent kinetic energy, is as follows:

ai j ≡
uiu j

k
− 2

3
δi j = −νt

k
Si j

+c1
νt

ε̃

(
SikSk j −

1
3

SklSklδi j

)

+c2
νt

ε̃
(
ΩikSk j +Ω jkSki

)

+c3
νt

ε̃

(
ΩikΩ jk −

1
3

ΩlkΩlkδi j

)

+c4
νtk
ε̃2

(
SkiΩl j +Sk jΩli

)
Skl

+c5
νtk
ε̃2

(
ΩilΩlmSm j +SilΩlmΩm j −

2
3

SlmΩmnΩnlδi j

)

+c6
νtk
ε̃2 Si jSklSkl

+c7
νtk
ε̃2 Si jΩklΩkl (2.27)

where the strain-rate and vorticity tensors are given by:

Si j =
∂Ui

∂x j
+

∂U j

∂xi
Ωi j =

∂Ui

∂x j
− ∂U j

∂xi
(2.28)

Quadratic combinations of S and Ω are necessary in order to capture the Reynolds stress anisotropy

in simple shear flows, whilst cubic terms are necessary to correct for streamline curvature and swirl

(for details see [34]).

The eddy-viscosity is calculated as previously in the linear EVM:

νt = cµ fµ
k2

ε̃
(2.29)
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and the near-wall damping function, fµ, and the ε̃-equation source term, Pε3, are re-optimized:

fµ = 1− exp

[(
− R̃t

90

)1/2

−
(
− R̃t

400

)2
]

(2.30)

Pε3 = 0.0022
S̃µt k2

ε̃

(
∂2Ui

∂x j∂xk

)2

for R̃t ≤ 250

= 0 for R̃t > 250

(2.31)

where S̃ is the dimensionless strain invariant, calculated from:

S̃ =
k
ε̃

√
1
2

Si jSi j (2.32)

The constant value of cµ used in the Launder & Sharma k − ε model was derived by considering

simple shear flows where production and dissipation of turbulence energy are in balance and hence

the ratio of shear stress to kinetic energy is approximately constant (cµ = (uv/k)2 ≈ 0.09). In the Craft

et al. model, cµ is made a function of the strain-rate and vorticity invariants. The original formulation

for cµ, developed by Suga [34], is as follows:

cµ = min

(
0.09,

0.3
1+0.35η1.5 {1− exp [−0.36exp (0.75η)]}

)
(2.33)

where:

η = max
(
S̃,Ω̃

)
(2.34)

and the dimensionless vorticity invariant, Ω̃, is given by:

Ω̃ =
k
ε̃

√
1
2

Ωi jΩi j (2.35)

More recently, Craft et al. [67] introduced a cµ function with a slightly weaker dependence on the

strain and vorticity invariants which was found to suffer less from unstable feedback2 :

cµ = min

(
0.09,

1.2
1+3.5η+ fRS

)
(2.36)

with:

fRS = 0.235 [max (0,η−3.333)]2
[

exp
(
−R̃t/400

)
+
√

S2
I

]
(2.37)

where the third invariant of the strain-rate tensor, SI , is given by:

SI =
Si jS jkSki

(SnlSnl/2)3/2
(2.38)

2As discussed in Craft et al. [67], a cµ function based on strain and vorticity invariants can lead to numerical instabilities
where an overpredicted strain-rate leads to a reduced cµ, which in turn reduces the eddy-viscosity and leads to an increased
strain-rate, which then reduces cµ etc.
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Both of the above cµ functions have been tested in this thesis. The recent Craft et al. paper also

described a number of methods for improving the stability of the NLEVM. The last two cubic terms

in the NLEVM expression, Equation (2.27), with coefficients c6 and c7 are tensorially linear, being

composed of a product of the strain-rate, Si j , and a scalar parameter. The linear term and these two

cubic terms can thus be combined as follows:

ai j ≡
uiu j

k
− 2

3
δi j = −

(
νt

k
− c6

νt k
ε̃2 SklSkl − c7

νt k
ε̃2 ΩklΩkl

)
Si j

+ c1
νt

ε̃

(
SikSk j −

1
3

SklSklδi j

)

+ c2
νt

ε̃
(
ΩikSk j +Ω jkSki

)

+ c3
νt

ε̃

(
ΩikΩ jk −

1
3

ΩlkΩlkδi j

)

+ c4
νt k
ε̃2

(
SkiΩl j +Sk jΩli

)
Skl

+ c5
νt k
ε̃2

(
ΩilΩlmSm j +SilΩlmΩm j −

2
3

SlmΩmnΩnlδi j

)
(2.39)

When the sum of the c6 and c7 terms in the first line of Equation (2.39) is negative, their contribution

to the coefficient of Si j will be positive, in effect increasing the magnitude of the eddy-viscosity, which

improves numerical stability. The momentum equation can therefore be rewritten, following the same

sign convention used in Craft et al. [67]:

ρU j
∂Ui

∂x j
=

∂P
∂xi

+
∂

∂x j

((
µ+µ′t

)
Si j −ρûiu j

)
(2.40)

where the modified eddy-viscosity, µ′
t , includes any positive contribution from the last two cubic terms

in Equation (2.27), and ûiu j contains the remaining higher-order components of the Reynolds stress,

i.e.:

µ′t = µt −µt
k2

ε̃2 min [(c6SklSkl + c7ΩklΩkl) ,0] (2.41)
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ρûiu j = c1
µt k
ε̃

(
SikSk j −

1
3

SklSklδi j

)

+c2
µt k
ε̃
(
ΩikSk j +Ω jkSki

)

+c3
µt k
ε̃

(
ΩikΩ jk −

1
3

ΩlkΩlkδi j

)

+c4
µt k2

ε̃2

(
SkiΩl j +Sk jΩli

)
Skl

+c5
µt k2

ε̃2

(
ΩilΩlmSm j +SilΩlmΩm j −

2
3

SlmΩmnΩnlδi j

)

+
µtk2

ε̃2 max [(c6SklSkl + c7ΩklΩkl) ,0] (2.42)

Following this treatment, the turbulence energy production can be written:

Pk = −ρuiu j
∂Ui

∂x j

=
(

µ′t Si j −ρûiu j

) ∂Ui

∂x j
(2.43)

The Craft et al. model was developed with reference to flow in curved channels, through a rotating

pipe, transitional flow over a flat plate, impinging jet flow and flow over a turbine blade [34]. The

model has since been applied to abrupt pipe expansions [67], flow through ribbed passages [68], flow

over a square cylinder adjacent to a wall, through a 10◦ plane diffuser, through a square-section U-

bend and over a three-dimensional simplified car body [35]. The recent studies by Robinson in a

plane diffuser concluded that the model was able to predict smooth wall separation and reattachment

in an adverse pressure gradient. For flow through the U-bend which involves strong flow curvature

and streamwise vorticity, the predicted velocity profiles were in good agreement with experiments (in

fact, as good as the more sophisticated cubic differential stress model of Craft et al. [69]). However,

for flow over the “Ahmed” car body, the model predicted boundary layer separation over the 25◦

rear slant whereas experiments (and a linear k− ε model) indicated that the flow was attached. This

discrepancy is discussed in greater detail in Chapter 7.

2.4 “Standard” Wall Functions

In the following section and in later discussions it is necessary to distinguish between the relatively

simple log-law based wall functions and the new numerical wall function. To make this distinction

clear, all the wall functions which prescribe log-law velocity and temperature profiles within the near-

wall cell are called “standard” treatments. The section begins by identifying some common features

of the standard wall functions which are tested in the current work, before proceeding to discuss each

wall function in more detail. Implementation of the wall functions into the two codes, TEAM and

STREAM, are discussed in more detail in Chapter 3.
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2.4.1 Common Features

All of the standard wall functions presented below (Sections 2.4.2 to 2.4.5) follow the same functional

form. Each involves the modification of the discretized transport equations for momentum, kinetic en-

ergy and dissipation rate in the near-wall cell to account for the presence of the wall. For a description

of the near-wall cell notation (e.g. locations of nodes P and N) see Figure 2.1.

���������������������������������������������������������������������������������������������������������

N

P

v Viscous
Sublayer

Fully 
turbulent
region

Wall

n

Figure 2.1: Cell notation used by standard wall functions.

Momentum

All of the standard wall functions make use of the log-law for determining the wall shear stress, τwall ,

using the velocity scale
(

c1/4
µ k1/2

)
:

U+ =
1
κ

ln(Ey+)

c1/4
µ k1/2U
τwall/ρ

=
1
κ

ln

(
Ec1/4

µ k1/2y
ν

)
(2.44)

which can be rearranged as:

τwall =
ρκc1/4

µ k1/2U

ln
(

Ec1/4
µ k1/2y/ν

) (2.45)

In some wall functions k is evaluated at the near-wall node, denoted kP, and in others, at the edge of

the viscous sublayer, kv. The above conditions apply if the near-wall node is within the fully-turbulent

region, which is defined as y+ > 11.6. If the viscous sublayer is large in comparison to the width of

the near-wall cell and y+ < 11.6, the linear-law should be used:

U+ = y+ (2.46)
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which gives the following expression for the wall shear stress:

τwall = µ
U
y

(2.47)

In the spinning-disc case examined later, the wall is rotating at an angular velocity Wwall = Ωr. Using

a stationary reference frame, the dimensionless tangential velocity is therefore given by:

W+ =
W −Wwall

Wτ
(2.48)

Analogous expressions to Equations (2.45) and (2.47) can be defined for the wall shear stress in the

tangential direction.

Turbulent Kinetic Energy

The transport equation for k is solved for the near-wall nodes (node P in Figure 2.1) but since produc-

tion, Pk, and dissipation, ε, are expected to change rapidly across the near-wall region, it is not suitable

to use values of Pk and ε evaluated at the centre of the cell. Instead, values of Pk and ε are substituted

with cell-averaged Pk and ε terms which take into account the changes in turbulence quantities across

the near-wall cell. These averaged quantities are approximated differently in different wall functions

and it is principally through changes in the assumed profiles of turbulent stress (τ = −ρu iu j) and k,

used in Pk and ε, that improvements in the standard wall functions are achieved.

The wall functions, presented below, all describe an averaged production term due to shear stress

which is denoted Pkuv. In impinging, separating or reattaching flows the normal stress contribution

to k-production is significant and so it is inadvisable to use only the shear stress contribution. In

the impinging jet and spinning disc calculations, described later, a normal stress contribution has

therefore been included in Pk. This has been calculated based on the normal stress at the near-wall

node and the strain-rate across the cell (based on the velocity interpolated to the cell boundaries). For

a two-dimensional Cartesian grid arrangement the cell-averaged production is therefore given by:

Pk = Pkuv −ρuu
∂U
∂x

−ρvv
∂V
∂y

(2.49)

In Chapter 5 the effects of neglecting the normal stress contribution to Pk on heat transfer predictions

for the impinging jet are discussed (see Figures 5.39 and 5.42).

Dissipation Rate

The transport equation for ε is not solved at the near-wall nodes in the standard wall functions con-

sidered here, but instead the value of εP is prescribed from equilibrium length scale assumptions. The
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equilibrium length scale is given by:

lm = c3/4
µ

k3/2

ε
= κy (2.50)

and hence the dissipation rate at the near-wall node is prescribed as:

εP =
c3/4

µ k3/2
P

κyP
(2.51)

Temperature

For calculations involving heat transfer, the wall temperature is calculated using the log-law:

T + =
1
κh

ln
(
y+
)
+ ch (2.52)

which can be rearranged to give:

T+ = σt
(
U+ +P

)
(2.53)

where P is the function of Jayatilleke [44], σt is the turbulent Prandtl number and the dimensionless

temperature, T +, is given by:

T+ =
(Twall −T )

Tτ
Tτ =

qwall

ρcpUτ
(2.54)

This can be rearranged into an expression for either the wall temperature, Twall :

Twall = TP +
qwall σt (U+ +P)

ρcpc1/4
µ k1/2

P

(2.55)

or the wall heat flux, qwall :

qwall =
ρcpc1/4

µ k1/2
p (Twall −TP)

σt (U+ +P)
(2.56)

If the near-wall node is within the viscous sublayer, defined as y+ < 11.6, Fourier’s heat conduction

law is applied instead of the log-law:

T+ = y+σ (2.57)

where σ is the molecular Prandtl number (σ = µcp/λ). This can be rearranged for wall temperature,

Twall :

Twall = T +
qwall

λ
y (2.58)

or wall heat flux, qwall :

qwall = λ
(Twall −T)

y
(2.59)
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2.4.2 Launder & Spalding (TEAM)

The original TEAM code used the wall function of Launder & Spalding [48] (see also the TEAM

manual [70]). This calculates the wall shear stress from the log-law with properties evaluated at the

near-wall node P:

c1/4
µ k1/2

P UP

τwall/ρ
=

1
κ

ln

(
Ec1/4

µ k1/2
P yP

ν

)
(2.60)

with constants κ = 0.42 and E = 9.79. The average production of k due to shear stress is calculated

assuming a constant shear stress across the whole of the near-wall cell (τ = τwall) including viscous

sublayer, and the strain-rate used in the cell-averaged production term is simply taken from the nodal

value of velocity (∂U/∂y = UP/yP):

Pkuv =
1
yn

� yn

0
−ρuv

∂U
∂y

dy = τwall
UP

yP
(2.61)

Likewise, the average dissipation rate is found from assuming that −ρuv = τwall and ∂U/∂y =UP/yP:

−ρuv = τwall = µt
∂U
∂y

(2.62)

τwall

ρ
= cµ

k2

ε
UP

yP
(2.63)

and substituting in U+ = ρc1/4
µ k1/2

P U/τwall :

ε =
c3/4

µ k3/2
P U+

P

yP
(2.64)

2.4.3 Simplified Chieng & Launder (SCL)

In the Simplified Chieng & Launder (SCL) wall function, the wall shear stress is evaluated as previ-

ously with the original TEAM wall function. For the average production, in the fully turbulent region,

the turbulent shear stress is assumed to be constant and equal to the wall shear stress while in the

viscous sublayer the turbulent stress is assumed to be zero (see Figure 2.2). The strain rate (∂U/∂y)

is determined from differentiating the log-law.

Pkuv =
1
yn

� yn

yv

τwall
τwall

κc1/4
µ ρk1/2

P y
dy =

τ2
wall

κc1/4
µ ρk1/2

P yn

ln

(
yn

yv

)
(2.65)

where the sublayer thickness, yv, is found from assuming a constant sublayer Reynolds number, (Rv =

k1/2
P yv/ν = 20).

The average dissipation rate is obtained by assuming ε to be constant in the viscous sublayer and

equal to its wall limiting value, such that k increases quadratically across the viscous sublayer. In the
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Figure 2.2: Simplified Chieng & Launder wall function: assumed profiles of turbulent shear stress
(−ρuv) and turbulent kinetic energy (k) across the near-wall cell.

turbulent region ε varies according to the equilibrium length scale
(
k3/2/ε = cly

)
and the turbulent

kinetic energy is assumed to be constant outside the sublayer (k = kP).

ε =
1
yn

(
yv

2νkP

y2
v

+ � yn

yv

k3/2
P

cly
dy

)
=

1
yn

[
2k3/2

P

k1/2
P yv/ν

+
k3/2

P

cl
ln

(
yn

yv

)]
(2.66)

2.4.4 Chieng & Launder (CL)

The Chieng & Launder wall function [49] accounts for variations in turbulent stress (−ρuv) and

kinetic energy across the near-wall cell. The log-law is defined using k extrapolated to the edge of the

viscous sublayer (kv) in order to make the value of τwall less dependent upon the physical location of

the near-wall node yP:
c1/4

µ k1/2
v UP

τwall/ρ
=

1
κ

ln

(
Ec1/4

µ k1/2
v yP

ν

)
(2.67)

where the sublayer thickness, yv, is determined from yvk1/2
v /ν = 20, the integration constant is given

by E = 9.79 and kv is obtained by a fitting a straight-line through values of k at the two near-wall

nodes, P and N (shown in Figure 2.1). To calculate Pkuv, the turbulent stress in the viscous sublayer

is assumed to be zero and in the fully turbulent region the stress is assumed to vary linearly with wall

distance (see Figure 2.3). The velocity gradient (∂U/∂y) is calculated from the log-law as previously:

Pkuv =
1
yn
� yn

yv

[
τwall +

(τn − τwall)

yn
y

]
τwall

κc1/4
µ ρk1/2

v

1
y

dy (2.68)

=
τ2

wall

κc1/4
µ ρk1/2

v yn

ln

(
yn

yv

)
+

τwall (τn − τwall)

κc1/4
µ ρk1/2

v y2
n

(yn − yv) (2.69)

For the purpose of evaluating ε, k is assumed to vary quadratically in the viscous sublayer and linearly

in the fully turbulent region. The cell-averaged dissipation rate is evaluated using the same assump-

tions as used with the SCL wall function, but with a linear interpolation for k in the fully turbulent
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Figure 2.3: Chieng & Launder wall function: assumed profiles of turbulent shear stress (−ρuv) and
turbulent kinetic energy (k) across the near-wall cell.

region:

ε =
1
yn

(
yv

2νkv

y2
v

+ � yn

yv

1
cly

[
kn −

(kn − kP)

yn − yP
(yn − y)

]3/2

dy

)
(2.70)

The above integration is performed numerically. The turbulent kinetic energy evaluated at the northern

edge of the cell, kn, is obtained by linear interpolation between the two neighbouring nodes P and N.

Following the expression for wall shear stress, τwall , the wall temperature is based on kv rather than

kP to reduce the dependence on the position of node P:

Twall = TP +
qwall T+

ρcpc1/4
µ k1/2

v

(2.71)

where T + is evaluated using U+ evaluated with kv as for the wall shear stress expression.

2.4.5 Johnson & Launder (JL)

The Johnson & Launder wall function [50] extends the Chieng & Launder wall function by accounting

for variation in the sublayer thickness, yv. Johnson & Launder noted that if the magnitude of the

shear stress falls rapidly with distance from the wall (e.g. in highly accelerated boundary layers) the

thickness of the sublayer is increased beyond that which would be predicted from a constant sublayer

Reynolds number, Rv. Conversely in the reattachment region of a backward step there is low wall

shear stress but high shear stress and turbulence energy a short distance away from the wall. The

modification proposed by Johnson & Launder is to make the sublayer Reynolds number a function

of the near-wall gradient of k such that, if there is a diffusion of energy towards the wall, then the

dimensionless thickness of the sublayer is reduced. This is implemented by introducing a variable

sublayer Reynolds number, Rv:

Rv =
k1/2

v yv

ν
=

20
1+3.1λ

λ =
kv − kwall

kv
(2.72)

where kwall and kv are extrapolated from kP and kn. At the edge of the sublayer (y = yv), both the

log-law and the linear relationship between U + and y+ can be applied (Equations 1.11 and 1.14). If
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these two expressions are equated it can be shown that the integration “constant”, E , in the log-law is

not in fact a constant as it has been assumed up to this point, but a function given by:

E =
exp
(

c1/4
µ κRv

)

c1/4
µ Rv

(2.73)

The Johnson & Launder wall function therefore consists of two modifications to the CL wall function:

variable Rv and E .

2.4.6 Chieng & Launder Modifications

Two modifications to the Chieng & Launder wall function were tested during the course of the current

work to try to reduce the sensitivity of the wall function to changes in the near-wall cell size and

to improve its overall performance. In the first modification, the normal stresses were assumed to

vary linearly across the fully-turbulent region of the near-wall cell when calculating the cell-average

production term Pk. This is a simple continuation of the approach adopted by Chieng & Launder

for the shear stress variation across the cell. In the second modification, the Reynolds stresses were

no longer assumed to be zero across the viscous sublayer, but instead were assumed to follow their

wall-limiting behaviour (see Section 1.3). This introduces additional terms into the expression for Pk.

The performance of these two modifications are discussed with reference to the impinging jet flow

in Chapter 5. A further modification, for which results are not shown, assumed that the length scale

varies linearly across the two wall-adjacent cells in order to specify the value of the dissipation rate

at the near-wall node, εP. This was proposed in order to reduce the sensitivity of the wall function to

the size of the near-wall control volume in flows where the turbulence length scale does not follow

the equilibrium length-scale variation
(
k3/2/ε = cly

)
. However, it was found in the impinging jet flow

that this modification introduced stability problems.

2.4.7 NLEVM Implementation

The Craft et al. NLEVM uses strain-rates evaluated at the near-wall node, P, to calculate the cµ-

function and the additional non-linear stress components, µ
′
t and ûiu j in Equations (2.41) and (2.42).

To be entirely consistent with standard wall functions, the strain-rate (∂U/∂y) at node P should be

obtained by differentiating the log-law:

∂U
∂y

=
τwall

κc1/4
µ ρk1/2

P y
(2.74)

In practice, however, using the above expression for ∂U/∂y in the non-linear terms was found to

worsen the predictions of the wall functions in the impinging jet flow (see Figure 5.45 for the Chieng

& Launder wall function results). All the calculations discussed in Chapters 5 to 7 assume a linear

velocity profile across the cell for the strain-rate at the node used in the NLEVM terms.
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Numerical Implementation

Two finite-volume-based CFD codes have been used in the present work: Turbulent Elliptic Algorithm

of Manchester (TEAM) [70, 71] and Simulation of Turbulent Reynolds-averaged Equations for All

Mach numbers (STREAM) [72, 73]. Only the main elements of the two codes are presented which

have direct relevance to the current study. More information on the SIMPLE algorithm, finite-volume

discretization etc. can be found in numerous books on CFD techniques (for example, Patankar [74],

Versteeg & Malalasekera [75] and Ferziger & Perić [76]).

3.1 The Finite-Volume Method

In the finite-volume method, the governing equations are integrated over each of the finite control vol-

umes in the flow domain and the resulting integrated transport equations are then discretized, using

finite-difference-type formulas, to give a set of algebraic equations which are solved using an itera-

tive method (e.g. TDMA). To illustrate this procedure, one can consider a simple one-dimensional

convection-diffusion transport equation for steady flow, which is written as follows:

∂(ρUφ)

∂x
=

∂
∂x

(
Γ

∂φ
∂x

)
+C (3.1)

where φ is the transport variable, Γ is the diffusion coefficient and C contains the source terms. This

is integrated over a finite volume as follows:�
∆Vol

∂(ρUφ)

∂x
dVol =

�
∆Vol

∂
∂x

(
Γ

∂φ
∂x

)
dVol +

�
∆Vol

CdVol (3.2)

where the ∆Vol is the cell volume. Considering the cell to have constant cross-sectional area, A,

between east and west faces (denoted e and w, respectively), the above equation can be written:

(ρUAφ)e − (ρUAφ)w =

(
ΓA

∂φ
∂x

)

e
−
(

ΓA
∂φ
∂x

)

w
+CP∆Vol (3.3)

36
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The diffusion terms are discretized using central differencing, with quantities evaluated at the cell

faces, ()e and ()w, being replaced by expressions involving nodal values, as follows:

(
ΓA

∂φ
∂x

)

e
= (ΓA)e

(φE −φP)

∆xPE
(3.4)

(
ΓA

∂φ
∂x

)

w
= (ΓA)w

(φP −φW )

∆xPW
(3.5)

where subscripts P, E and W refer to values at the current node, the neighbouring eastern and western

nodes, respectively and ∆xPW is the distance between nodes P and W . Substituting these expressions

into Equation (3.3), the discretized transport equation becomes:

Feφe −Fwφw = De (φE −φP)−Dw (φP −φW )+S (3.6)

where F = ρUA is the convective mass flux, D = ΓA/∆x is the diffusion coefficient and S = CP∆Vol

is the integrated source term.

Central differencing is not used to approximate convective fluxes for reasons of boundedness and

transportiveness. A number of different discretization schemes for convection are outlined in Sections

3.2.2 and 3.3.3. For the present purposes of illustration the simplest scheme is adopted: the upwind

scheme, which approximates the boundary value as the upstream nodal value. For positive U -velocity

(i.e. from west to east) and for negative U -velocity (east to west) the value of φ on the eastern cell face

is approximated as:

φe = φP U > 0 (3.7)

φe = φE U < 0 (3.8)

Similar expressions can be written for the φ at the western cell face. The convective flux terms can

thus be expressed compactly as follows:

Feφe = φP max(Fe,0)+φE min(Fe,0) (3.9)

Fwφw = φW max(Fw,0)+φP min(Fw,0) (3.10)

The discretized 1-D convection-diffusion equation can now be written (substituting Equations 3.9 and

3.10 into 3.6):

aPφP = aEφE +aW φW +S (3.11)

where:

aE = De −min(Fe,0) (3.12)

aW = Dw +max(Fw,0) (3.13)

aP = aE +aW +(Fe −Fw) (3.14)
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and Fe −Fw = 0, from continuity (Equation 2.1).

The discretized governing equation (Equation 3.11) is typically solved using the Tri-Diagonal

Matrix Algorithm (TDMA)1. In order to improve the stability of the TDMA, the source term (S) is

decomposed into two parts:

S = sU + sPφP (3.15)

In general, if sP is negative then it is transferred to the left-hand-side of the discretized equation:

[aP −min(sP,0)]φP = aEφE +aW φW + sU +max(sP,0)φP (3.16)

which improves the diagonal dominance of the coefficient matrix and hence the stability.

For those flow variables that, by definition, must always be positive, such as k and ε, slightly

different rules are applied: when the source term, S, is negative it is transferred to the left-hand-side

of the discretized equation to prevent physically unrealistic negative values:

[
aP −

min(S,0)

φP

]
φP = aEφE +aW φW +max(S,0) (3.17)

It is relatively straight-forward to extend the above derivation to two and three-dimensional cases.

The resulting discretized transport equations have the following general form:

aPφP = ∑
nb

anbφnb +S (3.18)

where:

aP = ∑
nb

anb (3.19)

and nb indicates the neighbouring nodes (E , W , N, S, T and B).

3.1.1 SIMPLE Pressure-Correction Algorithm

For the RANS equations there is no direct method of specifying an equation for pressure. Instead,

pressure is determined indirectly using the continuity equation: if the correct pressure field is used to

solve the momentum equations then the continuity equation will be satisfied. In both the TEAM and

STREAM codes, the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) of Patankar &

Spalding [78] is used to handle the pressure-velocity coupling.

The discretized U -momentum equation for a two-dimensional geometry can be written:

aPUP = ∑
nb

anbUnb +(Pw −Pe)∆y (3.20)

where nb indicates the neighbouring nodes (E , W , N and S). The SIMPLE algorithm starts by assum-

1Details of the TDMA (or Thomas’ algorithm) are not provided here but can be found in most CFD textbooks, for
example Anderson [77].
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ing a guessed pressure field, P∗, and guessed velocity field, U ∗:

aPU∗
P = ∑

nb

anbU∗
nb +(P∗

w −P∗
e )∆y (3.21)

It is assumed that to satisfy the continuity equation, one must make a correction to the guessed velocity

and pressure fields. The correct velocity and pressure fields are given by:

U = U∗ +U
′

(3.22)

P = P∗ +P
′

(3.23)

where U
′
and P

′
are the necessary corrections. One can derive an equation for the necessary correction,

U
′
, by subtracting Equation (3.21) from (3.20):

U
′
P =

∑nb anbU
′
nb

aP︸ ︷︷ ︸
+

∆y
aP

(
P

′
w −P

′
e

)
(3.24)

The SIMPLE algorithm assumes that the underbraced term in Equation (3.24) is negligible. The

correct velocity is thus given by:

UP = U∗
P +

∆y
aP

(
P

′
w −P

′
e

)
(3.25)

The discretized continuity equation for a two-dimensional Cartesian grid can be written:

(ρUA)e − (ρUA)w +(ρVA)n − (ρVA)s = 0 (3.26)

where e, w, n and s denote values at the east, west, north and south cell faces, respectively. The

expressions for the correct velocity through the cell faces (Ue, Uw, Vn and Vs) can be obtained in

a similar manner to that described above for UP, and substituted into the continuity equation. The

resulting expression can be rearranged in terms of the pressure-correction, in the form:

aPP
′
P = ∑

nb

anbP
′
nb +S (3.27)

This equation is solved to find the pressure-correction P
′

at all points throughout the flow domain.

Once the pressure correction is known, it is then possible to update the guessed pressure (P∗) to its

correct value (P) and update the velocity field from Equation (3.25).

The steps involved in the SIMPLE algorithm can be summarized as follows:

1. Initially a pressure field is guessed, P∗, which used in the discretized momentum equations to

find the guessed velocity field.

2. An equation is solved for the pressure correction, P
′
, which gives the pressure difference be-

tween the guessed pressure and pressure necessary to satisfy the continuity condition.
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3. The pressure and velocity fields are then updated based on the pressure correction (with some

under-relaxation).

4. Other scalar transport equations are solved (e.g. k and ε).

5. Steps 1 – 4 are repeated (using the pressure field from the previous step as the initial guess)

until the calculation has converged.

3.1.2 Under-Relaxation

Under-relaxation is a means of slowing down the updating process of the variables and is necessary

for convergence of coupled non-linear equations. Variables are updated in the following manner:

φnew
P = αφcalc

P +(1−α)φold
P (3.28)

where φold
P is the value of φ from the previous iteration and φcalc

P is the result of the current calculation.

Applying the above formula to the discretized transport equation (Equation 3.18) gives:

aP

α
φnew

P = ∑
nb

anbφnb +S+(1−α)
aP

α
φold

P (3.29)

In practice, under-relaxation involves the modification of the coefficient aP and source S:

(aP)new =
aP

α
(3.30)

(S)new = S+(1−α)(aP)new φold
P (3.31)

Its effect, therefore, is to increase the diagonal dominance of the coefficient matrix and add in a source

term.

Since the pressure is updated by means of a pressure correction, its under-relaxation takes the

form:

Pnew
P = P∗

P +αP
′
P (3.32)

where P′ is the pressure correction.

If the under-relaxation factor, α, in the above equations is set to unity there is no under-relaxation

and the new value is equivalent to the calculated value. Typical values for the under-relaxation factors

used in the impinging jet, spinning disc and Ahmed body studies are shown in Tables 5.1, 6.1 and 7.2,

respectively (see pages 97, 114 and 136).

3.2 TEAM Code

TEAM is a finite-volume code for the simulation of steady two-dimensional or axisymmetric turbulent

elliptic flows. It was used to study the fully-developed channel flow, impinging jet and spinning disc
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flows, documented in Chapters 4 to 6.

3.2.1 Storage Arrangement

A staggered Cartesian grid is used with scalars stored at nodal positions and velocities at the cell faces

(see Figure 3.1). This arrangement is used to prevent a “checker-board” pressure field being devel-

oped, where neighbouring pressure nodes have alternating high-low values but the cell face pressures

calculated using linear interpolation are constant across the flow field (so in effect the velocity field

“feels” a constant pressure). The grid is specified algebraically by setting the locations of the cell

faces, with nodes then being placed in the centre of each cell. Boundary nodes are located along the

edges of the flow domain which are used to apply the boundary conditions. Transport equations are

solved up to, but not including, the boundary nodes (i.e. in Figure 3.1 transport equations solved from

node P northwards but not at node S).
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Figure 3.1: Staggered grid arrangement used by TEAM: scalars stored at nodes (e.g. P and N), veloc-
ities stored at cell faces (e.g. V1 stored at n), edge of viscous sublayer located at v, boundary node S
located on wall. In axisymmetric coordinates the x-axis becomes the radial r-axis.

In the staggered grid arrangement, the wall shear stress is evaluated at cell faces (where the ve-

locity is calculated) whilst the average turbulent scalar source terms (Pk, ε etc.) and wall heat flux,

qwall , are evaluated at the scalar node in the centre of the cell. The UMIST-N wall function nodes are

positioned in the centre of the subgrid cells, in the equivalent position to the main-grid scalar nodes.

The wall shear stress is obtained at the scalar node position and is then linearly interpolated to the

cell boundary location. It was found that this gave identical results to those obtained when the wall

function was applied twice per cell (at both scalar and velocity nodes).
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3.2.2 Differencing Schemes

In the TEAM code, diffusion terms appearing in the transport equations for momentum and turbu-

lence parameters are discretized using second-order central differencing. There are two options for

approximating the convection terms: the Power-Law Differencing Scheme (PLDS) of Patankar [74]

and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) scheme of Leonard [79].

PLDS

PLDS is first-order accurate with respect to its Taylor series truncation error and is unconditionally

bounded. For a uniform mesh and positive U -velocity (from west to east), the eastern boundary value

φe is approximated as:

φe = φP +
φE −φP

2
(1−0.1Pee)

5

(1−0.05Pee)
5 for 0 ≤ Pe ≤ 10

φe = φP for Pe > 10

(3.33)

where subscript E refers to the eastern nodal value. Pe is the non-dimensional cell Peclet number, a

measure of the relative strength of convection to diffusion:

Pe =
F
D

=
ρU

Γ/∆x
(3.34)

For Peclet number greater than 10, the scheme is equivalent to a simple upwind approach (see discus-

sion in Section 3.3.3).

QUICK

QUICK is a third-order accurate unbounded scheme, where the interpolation for the cell face value,

φe or φw, is based on a quadratic interpolation using three nodal values, one on the downstream side

of the cell face and two on the upstream side. For a uniform mesh, if the U -velocity is positive:

φe =
1
2

(φE +φP)− 1
8

(φE −2φP +φW ) (3.35)

φw =
1
2

(φP +φW )− 1
8

(φP −2φW +φWW ) (3.36)

where subscript W refers to the western nodal value and WW is the node to the west of the W node.

Boundary values, φe and φw, obtained by QUICK can be thought of as a combination of linear inter-

polation and upstream-weighted correction. Since the discretized equations are solved using a TDMA

which only treats the near-diagonal terms implicitly (aP, aE and aW ), the other terms (aEE and aWW )

are included in the source term. Whilst QUICK is a more accurate scheme than PLDS, it is also un-

bounded and can suffer from over- or under-shoots. In the impinging jet flow, discussed later, values

of k and ε are close to zero near the entrainment boundary. As a consequence, small undershoots
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can lead to negative values of k and ε which are physically unrealistic and cause stability problems.

Therefore PLDS was used for turbulence scalars and QUICK for the velocity field.

3.2.3 Wall-Function Implementation

Wall-Parallel Velocity

The coding of wall functions into TEAM is much simpler than for STREAM owing to the use of a

Cartesian grid. To implement the wall-function conditions for the wall-parallel U -velocity, there are

two parts. In the first, the diffusional flux to the wall calculated by the near-wall main-grid cell is set

to zero, by setting aS = 0 (for a wall on the south face) in the discretized momentum equation. To

understand the effect of setting aS = 0, one can consider the diffusion term:

∂
∂y

(
µe f f

∂U
∂y

)
(3.37)

This is discretized, using central differences, and integrated over the cell using the finite-volume

method to give: � ∂
∂y

(
µ

∂U
∂y

)
dVol =

(
µA

∂U
∂y

)

n
−
(

µA
∂U
∂y

)

s︸ ︷︷ ︸
(3.38)

where A is the area of the cell face parallel to the wall and n and s refer to north and south boundary

values. By setting aS = 0, one is setting the underbraced term to zero. This is necessary since the

∂U/∂y part of the underbraced term would otherwise be calculated assuming there to be a linear

change in velocity between the southern node S (on the wall surface) and the near-wall node, P (see

Figure 3.1). When a fine near-wall grid is used with a low-Re model, a linear U -velocity profile

provides an adequate approximation of the velocity variation between nodes S and P, but when a

large near-wall cell is used one needs to assume, or calculate, a more accurate profile. Standard wall

functions replace ∂U/∂y with a value obtained from assuming a logarithmic U -velocity profile whilst

the UMIST-N wall function finds ∂U/∂y from a local solution of the flow field. Once aS has been

set to zero, the second part of the wall-function implementation is to add in a replacement for the

underbraced term. The replacement term consists of the wall shear stress (effectively the µe f f ∂U/∂y

part of Equation 3.38) multiplied by the area of the cell face parallel to the wall:

Fwall = −τwallA (3.39)

The negative sign is introduced since the diffusive flux in Equation (3.38) is negative and the complete

term is called the “wall force”, Fwall . This is added into the source term in the discretized wall-parallel

momentum equations at the near-wall node. If a log-law wall function is used, the wall force is

expressed in terms of the velocity at the near-wall node: for a near-wall node in the fully-turbulent
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region of the boundary layer, y+ > 11.6, the wall force is given by:

Fwall = −ρκc1/4
µ k1/2UPA
ln (Ey+)

(3.40)

or if y+ < 11.6, the wall force becomes:

Fwall = −µ
UP

yP
A (3.41)

Since UP appears explicitly in the above expressions and the term (Fwall/UP) is always negative, one

can place the wall force into the linearized source term, sP:

sP =
Fwall

UP
(3.42)

This increases the diagonal dominance of the coefficient matrix for the discretized U -momentum

equation, improving stability.

The UMIST-N wall function does not calculate τwall as a function of UP and therefore one cannot

linearize the source term. Instead the wall force calculated by UMIST-N wall function (Fwall = −τwallA)

is added into the source term sU , i.e.:

sU = Fwall (3.43)

Tangential Velocity

In the spinning-disc case examined in Chapter 6, the wall is rotating at constant tangential velocity,

Wwall = Ωr. The tangential velocity log-law can be written, for a stationary reference frame:

W −Wwall

Wτ
=

1
κ

ln
(
Ey+

)
(3.44)

Using a standard wall function, the wall force in the tangential direction, Fwall,φ, is calculated for

y+ > 11.6:

Fwall,φ = −ρκc1/4
µ k1/2 (WP −Wwall)A

ln (Ey+)
(3.45)

The source term is split into the sU and sP source terms as follows:

sU =
ρκc1/4

µ k1/2Wwall A
ln (Ey+)

(3.46)

sP = −ρκc1/4
µ k1/2A

ln(Ey+)
(3.47)
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Similarly, if the near-wall node is within the viscous sublayer (y+ < 11.6):

Fwall,φ = −µ
(WP −Wwall)

yP
A (3.48)

and the source terms become:

sU = µ
Wwall

yP
A (3.49)

sP = − µ
yP

A (3.50)

The tangential wall shear stress calculated by the UMIST-N wall function is not a function tangential

velocity at the near-wall node, WP, and therefore the tangential wall force calculated by UMIST-N is

added into the source term sU .

Wall-Normal Velocity

In a staggered-grid arrangement, the wall-normal velocity, V , is calculated at the wall boundary node

and at the north face of the control volume (see Figure 3.1). For a non-porous wall, the V -velocity

is simply set to zero on the wall surface. One does not need to make any other modifications to the

V -momentum equation.

Turbulence Parameters

In the four “standard” wall functions discussed in Chapter 2, the k-equation is solved in the near-wall

cell with modified source terms (Pk and ε), whilst the ε-equation is not solved but instead its value is

prescribed at the near-wall node. Introducing modified source terms into the k-equation is simply a

matter of removing the old calculated near-wall cell values of production and dissipation, Pk and ε,

from the source term of the k-equation and then adding in the wall-function values. Since the standard

wall functions involve expressions for the production due purely to shear stress, only the shear stress

component of Pk is removed. The wall function values for average production due to shear stress, Pkuv,

and average dissipation rate, ε, are placed into source terms sU and sP as follows:

sU = max
[(

Pkuv −ρε
)
,0
]

∆Vol (3.51)

sP =
min

[(
Pkuv −ρε

)
,0
]

kP
∆Vol (3.52)

where ∆Vol is the volume of the near-wall cell. To set the value of εP, source terms are added to the

discretized equation as follows:

sU = 1030ε∗P sP = −1030 (3.53)
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where 1030 is an arbitrary large number and ε∗P is the wall function value for ε at the near-wall node.

Substituting these source terms into the discretized equation leads to the following expression:

(
aP +1030)εP = aNεN +aSεS +aEεE +aW εW +1030ε∗P (3.54)

and, since the neighbouring coefficients aNφN , aSφS are much smaller than 1030 , the expression

becomes:

εP = ε∗P (3.55)

The UMIST-N wall function involves the solution of both k and ε̃ equations in the near-wall cell

with modified source terms. A similar approach to that suggested above for the k-equation (Equa-

tions 3.51 and 3.52) is therefore applied for both k and ε̃ equations. The cell-averaged production

term calculated across the subgrid, Pk, includes both shear and normal components and so the entire

production term, Pk, is removed from the near-wall cell prior to adding in the wall function value.

Using both standard and UMIST-N treatments, the diffusive fluxes of k and ε to the wall are set to

zero, by setting aS = 0.

Temperature

Implementing the temperature wall function is similar to the procedure used for wall-parallel mo-

mentum but instead of replacing the wall shear stress one replaces the wall heat flux, and instead

of assuming a no-slip condition at the wall one prescribes (or calculates) the wall temperature. The

temperature equation is solved at the near-wall node, suppressing the heat flux to the wall calculated

using a linear temperature gradient by setting aS = 0. If constant heat flux conditions are prescribed,

one knows the heat flux to the wall, qwall , and must calculate the wall temperature Twall . Conversely,

if constant temperature conditions are applied, one knows Twall and has to calculate qwall . The ex-

pressions for Twall and qwall used by standard wall functions are presented in Section 2.4 and those

calculated by the UMIST-N wall function in Section 4.3. The temperature at the node on the wall

surface is set to Twall and the following source term is added into the discretized temperature equation

in the near-wall cell:

sU = −qwallA (3.56)

where A is the area of the cell face parallel to the wall.

3.2.4 Convergence Criteria

If the discretized transport equations are solved exactly then the left and the right sides of the dis-

cretized transport equation (Equation 3.18) will be exactly equal. However, since the set of non-linear

coupled equations requires an iterative solution, an imbalance or residual may exist between the two

sides of the discretized equations. The residual for parameter φ in a particular cell is calculated from
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the imbalance as follows:

Rφ = aPφP −∑
nb

anbφnb −S (3.57)

where nb indicates the neighbouring nodes (E , W , N and S). If the calculation is completely converged

then the Rφ value at all nodal positions is zero. In the TEAM code, an overall residual for each

variable is determined by summing the absolute values of the residuals over all the main-grid nodes

and normalizing with bulk inlet quantities (for definitions, see [70]). A mass imbalance is calculated

rather than a pressure-residual. The calculation is said to have converged when the normalized velocity

and mass residuals are less than a prescribed value. For the impinging jet flow this was 5×10−4 which

corresponded to a reduction in the residuals of approximately four orders-of-magnitude from the start

to the end of a calculation. It was verified that using more stringent convergence criteria had no effect

on results.

3.3 STREAM Code

The STREAM code is significantly more sophisticated than the TEAM code described above. It can be

used in either 2-D, 3-D or axisymmetric modes using a non-orthogonal body-fitted grid if necessary.

Both steady and unsteady flows can be analyzed and mass-weighted averaging can be activated if

compressibility effects are significant. STREAM was used to model the flow around the Ahmed body,

considered in Chapter 7. For the purposes of this work the STREAM code was only used in steady,

incompressible mode.

The STREAM code has many similarities to the TEAM code, described above. The significant

issues of difference that are important to the present work are discussed below. Transport equations

using curvilinear coordinates, which are solved by STREAM, are presented in Appendix F. For a full

description of the code, see Lien [73].

3.3.1 Grid Arrangement

The STREAM code uses a fully-collocated storage arrangement with all velocity components and

scalar quantities stored at nodal positions. In order to overcome “checker-board” problems with the

pressure field, a Rhie-Chow interpolation is used to calculate velocities at cell faces (see below). A

structured non-orthogonal curvilinear grid arrangement is used although the velocity vectors (and

hence Reynolds stress components) are always aligned to a Cartesian reference frame. Using Carte-

sian coordinates for velocity is useful since it allows the momentum equations to be written in conser-

vative form. For complex geometry, the flow domain is decomposed into a number of separate blocks

where block-to-block communication is achieved using additional halo nodes. Nodes are located in

the centre of each control volume and along the edges of blocks there are boundary nodes. Transport

equations are only solved for nodes internal to cells; boundary nodes and halo nodes provide boundary

conditions.
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3.3.2 Dimensionless Parameters

The STREAM code solves transport equations for dimensionless parameters. The momentum, pres-

sure and turbulence scalar parameters are all non-dimensionalized with bulk quantities. Non-dimensional

forms of the parameters are as follows:

Ui =
Ui

U ′ ; x j =
x j

L
; t = t

U
L

(3.58)

ρ =
ρ
ρ′ ; P =

P

ρ′ (U ′)2 ; uiu j =
uiu j

(U ′)2 (3.59)

where underlined characters denote dimensionless parameters, ρ′, U ′ and L are characteristic density,

velocity and length scales and the pressure P and dimensionless pressure P are measured from the

same reference pressure. The momentum equation in Cartesian tensors is given by:

∂
∂t

(ρUi)+
∂

∂x j
(ρUiU j) =

− ∂P
∂xi

+
∂

∂x j

[
µ

(
∂Ui

∂x j
+

∂U j

∂xi
− 2

3
δi j

∂Um

∂xm

)]
+

∂
∂x j

(−ρuiu j) (3.60)

Substituting for dimensionless parameters gives:

ρ′ (U ′)2

L
∂
∂t

(
ρUi
)
+

ρ′ (U ′)2

L
∂

∂x j

(
ρUiU j

)
=

−ρ′ (U ′)2

L
∂P
∂xi

+
U ′

L2

∂
∂x j

[
µ

(
∂Ui

∂x j
+

∂U j

∂xi
− 2

3
δi j

∂Um

∂xm

)]

+
ρ′ (U ′)2

L
∂

∂x j

(
−ρuiu j

)
(3.61)

which can be rearranged as:

∂
∂t

(
ρUi
)
+

∂
∂x j

(
ρUiU j

)
=

− ∂P
∂xi

+
∂

∂x j

[
1

Re

(
∂Ui

∂x j
+

∂U j

∂xi
− 2

3
δi j

∂Um

∂xm

)]
+

∂
∂x j

(
−ρuiu j

)
(3.62)

where Re is the Reynolds number given by:

Re =
ρ′U ′L

µ
(3.63)

In the STREAM code, the molecular viscosity appearing in the subgrid momentum and scalar equa-

tions is therefore given by the inverse of the bulk flow Reynolds number, µ → (Re)−1. To simulate

the same flow at different Reynolds numbers one simply modifies the molecular viscosity term. For
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example, a channel flow with Reynolds number Re = 100,000 (based on the wall-to-wall channel

height and bulk velocity) has the flow domain set up with a wall-to-wall channel height of unity, an

inlet bulk velocity of unity and a molecular viscosity of µ = 1/100,000. To switch to a Reynolds

number of Re = 1000 one simply sets the molecular viscosity to µ = 1/1000.

3.3.3 Differencing Schemes

The STREAM code uses central differences to approximate diffusion terms. There are two options in

the code for approximating convective transport: the upwind scheme [80] and the Upstream Mono-

tonic Interpolation for Scalar Transport (UMIST) scheme [81].

Upwind

The upwind scheme simply approximates the boundary value as the upstream nodal value. For a

positive U -velocity (from west to east) the values of φ on the eastern and western boundaries are

approximated as:

φe = φP (3.64)

φw = φW (3.65)

The upwind scheme is unconditionally bounded but is only first-order accurate. The first-order trunca-

tion error term in the Taylor series expansion for the gradient ∂φ/∂x contains a second-order derivative

term, ∂2φ/∂x2. If insufficient grid nodes are employed, the upwind scheme is therefore liable to intro-

duce unacceptable levels of numerical diffusion (or artificial viscosity). This is only a problem if the

flow is not aligned to the grid, when the numerical inaccuracy of the upwind scheme can introduce

cross-flow diffusion far in excess of the physical value if the cell Peclet number is greater than Pe = 2

[73].

UMIST

UMIST is a TVD (Total Variation Diminishing) scheme based on third-order accurate scheme QUICK

(described in Section 3.2.2). A limiter is used to diminish oscillations caused by dispersive truncation

errors occurring with QUICK. The resulting scheme returns solutions which are close to those of

QUICK but without its oscillatory features. Since the scheme is not oscillatory it can be used for

convective transport of both mean-flow and turbulence scalars. For details of the scheme see Lien &

Leschziner [81].

3.3.4 Wall-Function Implementation

The implementation of wall functions into STREAM follows the same general procedure presented

above for TEAM. There are three notable points of difference. Firstly, when a standard wall function

is used, such as the simplified Chieng & Launder scheme, the cell averaged production term, Pk, used
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in the near-wall cell k-equation includes only the shear stress component. Secondly, the use of a

body-fitted non-orthogonal grid introduces some complications into the calculation of the wall shear

stress with standard wall functions and, thirdly, since a collocated grid arrangement is employed one

needs to calculate the pressure on the wall surface. Points two and three are examined below in greater

detail.

In STREAM, the main-grid velocity vectors are aligned with Cartesian axes. The velocity vector,

U, has components:

U = Ux î+Uyĵ+Uzk̂ (3.66)

where
(
î, ĵ, k̂

)
are the Cartesian unit vectors and (Ux,Uy,Uz) the velocity components. The wall-

normal unit-vector n̂ has Cartesian components:

n̂ = n̂x î+ n̂yĵ+ n̂zk̂ (3.67)

The magnitude of the projection of vector U in the wall-normal direction, |Un|, is calculated from the

scalar product of U and n̂:

|Un| = U · n̂ = |U| · |n̂|cosθ

= Uxn̂x +Uyn̂y +Uzn̂z (3.68)

The magnitude of the velocity vector parallel to the wall, |Ut |, can be found from Pythagoras:

∣∣Ut
∣∣ =

(
U2 −|Un|2

)1/2

=
(

U2
x +U2

y +U2
z −|Un|2

)1/2
(3.69)

where U2 is the dot product (U ·U). It is this term, the magnitude of the velocity component which

is tangential to the wall |Ut |, which is used by standard log-law wall functions to determine the wall

shear stress, τwall , i.e. in the standard log-law expression:

U+ =
1
κ

ln
(
Ey+

)
(3.70)

the dimensionless velocity, U +, is given by:

U+ =
|Ut |
Uτ

(3.71)

The dimensionless wall-normal distance (y+ = Uτy/ν) from the near-wall node to the wall is deter-

mined using:

y =
1
2

∆Vol
A

(3.72)

where ∆Vol is the near-wall cell volume and A is the area of the cell face in contact with the wall.

The tangential velocity Ut is aligned to the tangential unit vector, t̂, the direction of which is

dependent upon the local velocity field. It is necessary to find an expression for t̂ in terms of the
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Cartesian components so that the wall shear force, calculated from (Fwall = τwallA), can be distributed

amongst the U , V and W momentum equations. To find t̂ one first obtains an expression for the

velocity vector in the wall-normal direction, Un. This is simply the product of its magnitude, |Un|,
and the wall-normal unit-vector, n̂:

Un = (U · n̂) n̂

= (U · n̂) n̂x î+(U · n̂) n̂y ĵ+(U · n̂) n̂zk̂ (3.73)

The resultant velocity vector, U, is the sum of the wall-normal and wall-parallel velocity components,

Un and Ut . Therefore, the tangential velocity vector, Ut , is given by:

Ut = U−Un

=
(
Ux î+Uyĵ+Uzk̂

)
−
[
(U · n̂) n̂x î+(U · n̂) n̂y ĵ+(U · n̂) n̂zk̂

]

= [Ux − (U · n̂) n̂x] î+[Uy − (U · n̂) n̂y] ĵ+[Uz − (U · n̂) n̂z] k̂

= U t
x î+U t

y ĵ+U t
z k̂ (3.74)

This vector, Ut , is equal to the product of its magnitude, |Ut |, and the tangential unit vector, t̂, and so

one can derive an expression for t̂ from:

t̂ =
Ut

|Ut |

=
1

|Ut |
(
U t

x î+U t
y ĵ+U t

z k̂
)

= t̂x î+ t̂yĵ+ t̂zk̂ (3.75)

The wall force calculated by the wall function acts in the direction of the unit vector parallel to the

wall, t̂, and hence the wall force vector can be expressed:

Fwall = τwallAt̂ = (τwall A) t̂x î+(τwallA) t̂y ĵ+(τwallA) tzk̂ (3.76)

where the component of this force in the Cartesian x-direction, included as a source term in the U -

momentum equation, is as follows:

su = (τwallA) t̂x (3.77)

and similarly for the V - and W -momentum equations. The components of the tangential unit vector

are calculated from:

t̂x =
U t

x

|Ut | =
[Ux − (U · n̂) n̂x](

U2
x +U2

y +U2
z −|Un|2

)1/2
(3.78)

t̂y =
U t

y

|Ut | =
[Uy − (U · n̂) n̂y](

U2
x +U2

y +U2
z −|Un|2

)1/2
(3.79)
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t̂z =
U t

z

|Ut | =
[Uz − (U · n̂) n̂z](

U2
x +U2

y +U2
z −|Un|2

)1/2
(3.80)

where the magnitude of the wall-normal velocity vector is:

|Un| =
{
[(U · n̂) n̂x]

2 +[(U · n̂) n̂y]
2 +[(U · n̂) n̂z]

2
}1/2

(3.81)

and the magnitude of the projection of vector U in the wall-normal direction (U · n̂) is given by Equa-

tion (3.68).

The above approach assumes that the wall-parallel velocity component at the near-wall node acts

in the same direction as the wall shear stress. In a three-dimensional flow, it therefore ignores any

skewing of the velocity profile between the near-wall node and the wall. In order to account for skew-

ing of the velocity profile one needs to solve for two independent wall-parallel velocity components.

This is the approach used by the UMIST-N wall function, which solves for velocity components paral-

lel to the grid lines and obtains two wall-parallel wall shear stress components, τξ
wall and τη

wall (parallel

to the ξ and η grid-lines). The Jacobian matrix [J] is used to transform the wall force components from

grid-aligned to Cartesian coordinates:




τx
wall

τy
wall

τz
wall


=




xξ xη xζ

yξ yη yζ

zξ zη zζ




︸ ︷︷ ︸
[J]




τξ
wall

τη
wall

0


 (3.82)

The use of the Jacobian matrix to transform between coordinate systems is discussed in greater detail

in Appendix E. The wall force vector is then simply:

Fwall = (τx
wallA) î+

(
τy

wallA
)

ĵ+
(
τz

wallA
)

k̂ (3.83)

If a standard wall function is used, this approach of calculating two wall shear stress components, τξ
wall

and τη
wall , can be shown to be identical the use of a single resultant wall shear stress2 . However, in

more sophisticated wall functions, such as UMIST-A [61], the shear stress is dependent not only upon

the velocity vector at the near-wall node but also on the pressure gradient and convection. In principle,

it should therefore be possible to derive an analytical wall function which accounts for skewing of the

near-wall velocity profile.

2This is because the wall shear stress vector is only a function of the velocity vector at the near-wall node (all other terms
are scalars) so that any directional terms vanish in the dimensionless velocity U+ where one divides velocity by the shear
stress.



3.3. STREAM Code 53

3.3.5 Pressure on the Wall Surface

When a collocated storage arrangement is used, as in STREAM, it is necessary to set the pressure on

the wall surface. This is required in order to calculate the pressure gradient along the grid line that

intersects the wall plane which is used in the solution of the momentum equations at the near-wall

node3. The value of the pressure on the wall is set as follows. If one examines a fully-developed

channel flow using a 2-D Cartesian grid with zero V -velocity in the wall-normal y-direction, the V -

momentum equation simplifies to the following:

∂P
∂y

+
∂
(

ρv2
)

∂y
= 0 (3.84)

When a low-Reynolds-number turbulence model approach is used, the near-wall node is well within

the viscous sublayer and the Reynolds stress at the node is practically zero
(

v2
p = 0

)
. The pressure at

the wall in this case can be set equal to the pressure at the near-wall node (Pwall = PP and ∂P/∂y = 0).

However, when wall functions are used the Reynolds stress at the wall-adjacent node is no longer

zero. If one simply set the pressure on the wall equal to the value at the near-wall node (∂P/∂y = 0),

the large gradient in v2 from the node to the wall would lead to a spuriously large source term in

the V -momentum equation, which would lead to a non-zero V -velocity (whereas, for channel flow,

the V -velocity should be zero). In order to avoid this problem the above expression (Equation 3.84)

is used to set the wall value of the pressure when wall functions are used. To implement the above

condition using a three-dimensional body-fitted grid, the following expression is used:

∇P · n̂+(∇ ·ρu⊗u) · n̂ = 0 (3.85)

where n̂ is the unit wall-normal vector, u⊗u is the Reynolds stress in vector form and the gradient

operator, ∇, can be written for non-orthogonal coordinates as:

∇ =
∂ξ j

∂xi

∂
∂ξ j

ei (3.86)

where ei is the Cartesian unit vector and ∂ξ j/∂xi is a property of the grid. This expression is identical

to that used by the UMIST-N wall function to determine the pressure gradient across the subgrid cells,

as discussed in Chapter 4. The value of the pressure on the wall surface is calculated from the known

wall-parallel pressure gradients (∂P/∂ξ and ∂P/∂η) and the gradients of Reynolds stresses in all three

coordinate directions (for details, see Appendix E).

If the wall-parallel gradients of pressure and Reynolds stress are negligible, the calculation of the

3In a staggered grid arrangement the velocity is calculated at cell faces and one does not need to use the pressure at the
wall surface, only the pressure at the near-wall node. The first wall-normal velocity that is calculated is therefore at the top
face of the wall-adjacent cell.
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wall-pressure (Equation 3.85) can be simplified to:

∂P
∂n

+
∂
(

ρu2
n

)

∂n
= 0 (3.87)

where n is the wall-normal direction and u2
n represents the components of the Reynolds stress tensor

in the wall-normal direction. The fluctuating velocity component in the wall normal direction is

calculated from the scalar product, un = (u · n̂) and hence the normal stress, u2
n, is given by:

u2
n = (u · n̂)2 = (uxn̂x +uyn̂y +uzn̂z)

2

= u2
x n̂2

x +u2
y n̂2

y +u2
z n̂2

z +2(uxuyn̂xn̂y +uxuzn̂xn̂z +uyuzn̂yn̂z) (3.88)

To find the pressure on the wall, if one first discretizes Equation (3.87):

(
P+ρu2

n

)
P
−
(

P+ρu2
n

)
wall

∆n
= 0 (3.89)

where subscripts P and wall refer to values at the near-wall node and at the wall and, since the Reynolds

stress u2
n is zero on the wall surface:

Pwall =
(

P+ρu2
n

)
P

=

(
P

′
+ρu2

n −
2
3

ρk

)

P
(3.90)

where P
′
= P+2ρk/3 is the pressure stored by the STREAM code and P

′
wall = Pwall as kwall = 0. This

simplified calculation of the wall-pressure (Equations 3.87 to 3.90) is the standard formulation coded

into STREAM and was used in the calculations performed by Robinson [35] for the Ahmed body

flow. It is not used in the present study as it was found to introduce instability with the UMIST-N wall

function. Instead, Equation (3.85) is used, which is consistent with the pressure calculation employed

in the UMIST-N wall function (Equation 4.34).

The pressure gradient term appearing in the U -momentum equation, ∂P/∂x, can be written using

the chain-rule:
∂P
∂x

=
∂P
∂ξ

∂ξ
∂x

+
∂P
∂η

∂η
∂x

+
∂P
∂ζ

∂ζ
∂x

(3.91)

The source term due to the pressure gradient which appears in the integrated U -momentum equation

can therefore be written:

S = −
�

∆Vol

∂P
∂x

dVol

= −∂P
∂ξ

Aξ
x −

∂P
∂η

Aη
x −

∂P
∂ζ

Aζ
x

= −(Pe −Pw)Aξ
x − (Pn −Ps)Aη

x − (Pt −Pb)Aζ
x (3.92)

where ∆Vol is the cell volume (equivalent to the Jacobian, J), subscripts e,w,n,s, t,b refer to the cell
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faces, the cell dimensions in computational space are unity (∆ξ = ∆η = ∆ζ = 1) and the area vector

components are given by:

Aξ
x = J

∂ξ
∂x

; Aη
x = J

∂η
∂x

; Aζ
x = J

∂ζ
∂x

(3.93)

Physically, Ai
j components are the fraction of the area of the i face which is in the plane orthogonal to

the j-direction. For a Cartesian grid in which the ξi- and x j-axes are aligned, A1
1 ≡ Aξ

x would be total

area of the east face of the cell (since, for this geometry, the east face is orthogonal to the x-axis). The

pressure-gradient source term is treated as a combination of separate fluxes through each of the cell

faces, where for example the flux through the western face is
(

PwAξ
x

)
. Once the pressure on the wall

surface has been calculated, using Equation (3.85), the pressure gradient flux term for the wall face is

included in the source term in the momentum equation. For the U -momentum equation, with a wall

on the bottom face of a cell this is written simply:

Swall = PwallA
ζ
x (3.94)

it can be shown4 that this is equivalent to:

Swall = PwallAn̂x (3.100)

where n̂x is the Cartesian x-direction component of the unit-vector in the wall-normal direction, n̂.

4The unit vector acting in the wall-normal direction, n̂, is calculated from:

n̂ =
∇ζ
|∇ζ| (3.95)

where ζ = constant defines the wall surface. The gradient, ∇ζ, and its magnitude are given by:

∇ζ =
∂ζ
∂xi ei =

∂ζ
∂x

î+
∂ζ
∂y

ĵ+
∂ζ
∂z

k̂ (3.96)

|∇ζ| =

√(
∂ζ
∂x

)2

+

(
∂ζ
∂y

)2

+

(
∂ζ
∂z

)2

=

√
g33 =

A
J

(3.97)

where g33 is the contravariant metric tensor component acting in the ζ-direction, A is the area of the cell face in the ξ−η
plane (i.e. the area of the cell face in contact with the wall) and J is the Jacobian which is equivalent to the cell volume. The
wall-normal unit vector is then:

n̂ = n̂x î+ n̂y ĵ+ n̂zk̂

=
J
A

(
∂ζ
∂x

î+
∂ζ
∂y

ĵ +
∂ζ
∂z

k̂
)

(3.98)

The expression for the source term can therefore be written:

S = PwallJ
∂ζ
∂x

= PwallAn̂x (3.99)
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3.3.6 Rhie-Chow Interpolation

If a uniform grid is used with a collocated storage arrangement and a linear interpolation is used to

find the pressure on cell boundaries, the pressure gradient across a cell is dependent only upon the

pressure at the nodes in the surrounding cells and is independent of the pressure in the current cell.

This can lead to a pressure field developing in which neighbouring nodes have alternating high-low

values. A contour plot of pressure would reveal a checker-board pattern. To prevent this occurring,

Rhie & Chow [82] proposed an interpolation for the cell-face velocity (used by the convective fluxes

in the momentum equations) which incorporates a pressure-smoothing term.

The discretized U -momentum transport equation can be written:

aPUP = ∑
nb

anbUnb +SC − J
∂P
∂x

(3.101)

which can be rearranged as:

UP =
∑nb anbUnb

aP
+SC

︸ ︷︷ ︸
HP

−(Pe −Pw)
J∂ξ/∂x

aP︸ ︷︷ ︸
DU

P

(3.102)

where SC includes the cross-diffusion terms and the pressure gradient terms parallel to axes other than

the x-axis, the Jacobian, J, is equivalent to the cell volume and ∂ξ/∂x appears from the chain-rule:

∂P/∂x = (∂ξ/∂x) (∂P/∂ξ). This formula may also be written:

UP = HP−DU
P (Pe −Pw) (3.103)

A corresponding expression can be written for the neighbouring node to the east:

UE = HE −DU
E (Pee −Pe) (3.104)

where subscript ee is the eastern face of the cell which has node E at its centre. The velocity at the

eastern cell face can also be written:

Ue = He −DU
e (PE −PP) (3.105)

This final expression for the velocity at the eastern face includes the terms He and DU
e . In the Rhie-

Chow interpolation these terms are linearly interpolated from the neighbouring P and E values, taken

from Equations (3.103) and (3.104):

Ue =
1
2

(HP +HE)− 1
2

(
DU

P +DU
E

)
(PE −PP)

=
1
2

[
UP +DU

P (Pe −Pw)+UE +DU
E (Pee −Pe)

]

−1
2

(
DU

P +DU
E

)
(PE −PP) (3.106)
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which may also be written:

Ue =
1
2

(UP +UE)
︸ ︷︷ ︸

linear interpolation

+
1
2

[
DU

P (Pe −Pw)+DU
E (Pee −Pe)−

(
DU

P +DU
E

)
(PE −PP)

]
︸ ︷︷ ︸

pressuresmoothing

(3.107)

The U -velocity through the eastern face, Ue, can therefore be considered as consisting of two parts: a

straight-forward linear interpolation and a smoothing term which is a function of the pressure at the

neighbouring nodes. If the ee location coincides with a wall boundary, the pressure is extrapolated to

the wall surface5 .

Extension of Rhie & Chow Interpolation to Include Normal Stresses

The steady momentum equation in Cartesian coordinates at high Reynolds numbers can be written as

follows:
∂

∂x j
(ρUiU j) = − ∂P

∂xi
− ∂

∂x j
(ρuiu j) (3.108)

Taking the trace of this expression (i = j), the pressure and Reynolds stress terms are both of the

same form, i.e. expressing the gradient of a scalar. It is therefore possible to extend the Rhie-Chow

interpolation to include gradients of the normal stresses with the pressure gradient. The discretized

U -momentum equation is re-written:

UP =
∑nb anbUnb

aP
+SC

︸ ︷︷ ︸
HP

−(Pe −Pw)
J∂ξ/∂x

aP︸ ︷︷ ︸
DU

P

−
(

ρu2
e −ρu2

w

) J∂ξ/∂x
aP︸ ︷︷ ︸
DU

P

(3.109)

where SC now excludes the gradient parallel to the x-axis of both pressure and the u2 stress. The anal-

ysis given above, from Equations (3.103) to (3.107) can be repeated, substituting P with
(

P+ρu2
)

.

This results in the following expression for the U -velocity through the eastern face of a cell:

Ue =
1
2

(UP +UE)

+
1
2

{
DU

P

[(
P+ρu2

)
e
−
(

P+ρu2
)

w

]

+DU
E

[(
P+ρu2

)
ee
−
(

P+ρu2
)

e

]

−
(
DU

P +DU
E

)[(
P+ρu2

)
E
−
(

P+ρu2
)

P

]}
(3.110)

5The pressure at the wall surface, calculated instead from Equation (3.85), was found to cause instability in some
calculations and was therefore not used.
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Similarly one can find the V -velocity through the cell faces using
(

P+ρv2
)

, and for the W - veloc-

ity
(

P+ρw2
)

. This correction can improve the stability of a calculation in which there are steep

gradients in the normal Reynolds stresses.

3.3.7 Convergence Criteria

In STREAM, the dimensionless residual is calculated from:

Rφ = φP −
∑nb anbφnb +S

aP
(3.111)

where nb indicates the neighbouring nodes (E , W , N, S, T and B) and the velocity component or

turbulence scalar, φ, is dimensionless (as discussed in Section 3.3.2). A mass imbalance is calculated

instead of a pressure residual. The convergence criteria is specified using the RMS residual which is

calculated as follows:

RRMS
φ =

√
1
n ∑

n
R2

φ (3.112)

where n is the total number of nodes. The RMS residual tends to give a smaller value than the

expressions used in the TEAM code (Section 3.2.4). The quantity, RRMS
φ is also independent of the

grid size (i.e. number of nodes) which allows the relative degree of convergence between different

calculations to be assessed.



Chapter 4

Subgrid-Based Wall Function: UMIST-N

4.1 Assumptions & Methodology

Before going into the details of the new wall function, it is useful to highlight the similarities between

standard wall functions and the new wall function. Firstly, the new wall function uses the same grid

as would be used with standard wall functions, where there is a large near-wall cell that spans entirely

the viscous sublayer1 . Secondly, like standard wall functions, the new wall function returns values

of the wall shear stress and average source terms, such as Pk and ε, and these terms are employed

in the discretized equations in exactly the same way as with standard wall functions (see Chapter 3).

Thirdly, the new wall function can be used with any level of turbulence closure and it can be easily

modified to be used in any flow geometry or coordinate system (axisymmetric, 3-D, non-orthogonal

etc.).

The primary difference between the new wall function and standard treatments is that the new wall

function does not use any assumed profiles of velocity or length scale. Instead, profiles of the mean

flow and turbulence parameters near the wall are obtained by solving simplified boundary-layer-type

transport equations using a fine “subgrid” spanning the wall-adjacent control volume (see Figure 4.1).

The wall function differs from standard low-Re treatments in that it decouples the numerical solution

of the near-wall region from that of the main region of the flow domain and also because it does

not involve the solution of the pressure-correction equation over the subgrid. The new wall function

therefore does not suffer from the slow convergence problems of a full low-Re calculation.

The transport equations solved by the wall function across the subgrid account for convection

(both parallel and normal to the wall), pressure gradient, diffusion normal to the wall and source terms.

In the present study, a linear and a non-linear k− ε model have been tested and so simplified k- and

ε̃-equations have been solved in the wall function in addition to equations for the wall-parallel velocity

components and temperature (where a thermal field is solved). The subgrid transport equations are

1Typically the y+ of the near-wall node should be in the range 30 → 300. However, the new wall function is not reliant
upon the velocity log-law and low-Reynolds-number model equations are solved throughout the domain so the cell size can
be varied above and below these limits.
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Figure 4.1: Subgrid arrangement within near-wall main-grid control volume

discretized in a similar manner to that used for simple one-dimensional diffusion problems and solved

using a Tri-Diagonal Matrix Algorithm (TDMA). The wall-normal V -velocity in the near-wall cell

is calculated from continuity within each of the subgrid cells and is scaled to ensure that the subgrid

V -velocity at the outer edge of the subgrid (position n in Figure 4.1) is consistent with the main-grid

wall-normal velocity at that location. One subgrid iteration is performed for each main-grid iteration

so the subgrid solution converges as the main-grid solution converges. After each subgrid iteration,

average values of the source terms across the subgrid are calculated (e.g. Pk, ε), along with the wall

shear stress and, if the thermal field is being solved, the wall heat flux or wall temperature. These

quantities are then applied as modified source terms in the main-grid near-wall cells as would be

done in a standard wall-function approach. However, both the k- and ε-equations are solved in the

main-grid near-wall cell, unlike the standard wall functions documented earlier which only solved for

k and prescribed ε. In addition, low-Reynolds-number damping terms are included in the main-grid

transport equations to enable unlimited refinement of the grid near the wall.

As was mentioned in the Introduction, the new wall function has been developed at UMIST as

part of a concerted effort to find accurate and efficient alternatives to standard log-law-based wall

functions. The new wall function is called UMIST-N: Unified Modelling through Integrated Sublayer

Treatment - a Numerical approach.

4.2 Governing Equations

A number of assumptions are applied within the subgrid in order to obtain a simplified set of transport

equations: only the momentum equation(s) parallel to the wall are solved, the diffusion parallel to the

wall is assumed to be negligible in comparison to that normal to the wall, and the pressure gradient

is assumed to be constant across the near-wall main-grid cell. These assumptions are applied to the

Reynolds-averaged Navier-Stokes equations for momentum, energy and appropriate turbulence pa-
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rameters. The current version of the wall function uses the low-Reynolds-number Launder & Sharma

k− ε model [13] and the non-linear EVM of Craft et al. [30] but in principle any turbulence model

that can be integrated all the way to the wall can be used (e.g. one-equation model, k−ω, DSM).

The Navier-Stokes equations are often presented in Cartesian tensor form to express succinctly the

physical meaning of the various components (convection, diffusion, pressure gradient etc.) without the

complicated and perhaps unfamiliar terms introduced by more general coordinate systems. However,

for flows involving curved or complex-shaped walls one is forced to use body-fitted grids and the

transport equations must be expressed in curvilinear coordinates. The subgrid wall function was

initially developed with reference to flows in fairly simple geometries using a Cartesian grid: the

channel flow, impinging jet and spinning disc flows. The governing equations which were used in

these test cases are presented below (for simple 2-D flow) and in Appendix A for 2-D/axisymmetric

flows involving swirl. Subgrid transport equations for the more general non-orthogonal curvilinear

coordinate system are also summarized below, with a full derivation of these expressions being given

in Appendix D.

4.2.1 2-D Cartesian Grid

In a simple 2-D Cartesian geometry, transport equations are solved across the subgrid for the wall-

parallel U -momentum, turbulent kinetic energy, k, isotropic dissipation rate, ε̃, and for cases in which

the thermal field is solved, temperature, T . These four subgrid transport equations are written as

follows for steady incompressible flow:

ρU
∂U
∂x

+ρV
∂U
∂y

= −dP
dx

+
∂
∂y

[
µ

∂U
∂y

−ρuv

]
(4.1)

ρU
∂k
∂x

+ρV
∂k
∂y

=
∂
∂y

[(
µ+

µt

σk

)
∂k
∂y

]
+Pk −ρε (4.2)

ρU
∂ε̃
∂x

+ρV
∂ε̃
∂y

=
∂
∂y

[(
µ+

µt

σε

)
∂ε̃
∂y

]
+ cε1 f1Pk

ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (4.3)

ρU
∂T
∂x

+ρV
∂T
∂y

=
∂
∂y

[(
µ
σ

+
µt

σt

)
∂T
∂y

]
(4.4)

Each of the low-Reynolds-number damping terms appearing in the above equations has previously

been discussed in Chapter 2. The pressure gradient is intentionally not expressed using partial deriva-

tives since dP/dx is assumed constant across the subgrid. Some of the source terms appearing in the

above expressions can be simplified using the boundary-layer assumptions. For instance, the total

dissipation rate (ε) which appears in the k-equation is given by:

ε = ε̃+2ν

(
∂k1/2

∂x j

)2

(4.5)
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which is approximated in the subgrid by:

ε ≈ ε̃+2ν

(
∂k1/2

∂y

)2

(4.6)

The differential Yap correction (see Equation 2.17) can cause some instability when it is employed in

the subgrid wall function. This problem only occurs at the start of a calculation when there are rapid

changes in the values of k and ε̃ between successive iterations. Since the subgrid k- and ε̃-equations

are under-relaxed, they do not respond immediately to changes in the boundary conditions and, if

the main-grid k and ε̃ fields are changing rapidly, this can lead to large length-scale gradients in the

subgrid. To overcome this problem, the Yap correction in the outermost subgrid cell (farthest from the

wall) is set to zero initially and is re-introduced only once the solution is nearly converged.

Linear k− ε Model

Using the linear k− ε EVM, the Reynolds stress is assumed to be a linear function of the mean strain

rate:

−uiu j +
2
3

kδi j = νt Si j (4.7)

where the strain-rate tensor, Si j , is given by:

Si j =
∂Ui

∂x j
+

∂U j

∂xi
(4.8)

and the kinematic eddy-viscosity, νt :

νt = cµ fµ
k2

ε̃
(4.9)

Substituting these two expressions into the subgrid wall-parallel momentum equation one obtains:

ρU
∂U
∂x

+ρV
∂U
∂y

= −dP
dx

− d
dx

(
2
3

ρk

)
+

∂
∂y

[
(µ+µt)

∂U
∂y

]
(4.10)

Note that the wall-parallel gradient of the isotropic stress component 2/3ρk has been retained, despite

the assumption stated earlier that diffusion parallel to the wall is ignored within the subgrid. This term

is included for convenience since it is common practice in CFD codes to include the 2/3ρk term with

the pressure, so that the “pressure” which is stored in computer memory is in fact
(

P
′
= P+2ρk/3

)
.

In tests with the impinging jet flow, discussed later, including the 2/3ρk term with the subgrid pressure

gradient had negligible effect.

The production of turbulent kinetic energy, Pk, used in the subgrid k and ε̃ equations, includes
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components from all of the stresses:

Pk = −ρuiu j
∂Ui

∂x j

= −ρu2 ∂U
∂x

−ρuv

(
∂U
∂y

+
∂V
∂x

)
−ρv2 ∂V

∂y
(4.11)

whilst the gradient production term, Pε3, is simplified:

Pε3 = 2µνt

(
∂2Ui

∂x j∂xk

)2

≈ 2µνt

(
∂2U
∂y2

)2

(4.12)

The remaining damping functions in the linear k− ε model of Launder & Sharma are the same as

those presented in Chapter 2.

Non-Linear k− ε Model

The calculation of the Reynolds stress across the subgrid using the Craft et al. two-equation NLEVM

involves the same expressions as discussed in Section 2.3 for the main-grid. The recommendations of

Craft, Iacovides & Yoon [67] are followed to maximize the numerical stability of the model, which

lead to the following expression for the subgrid U -momentum:

ρU
∂U
∂x

+ρV
∂U
∂y

= −dP
′

dx
+

∂
∂y

[(
µ+µ′t

) ∂U
∂y

−ρûv

]
(4.13)

The modified eddy-viscosity, µ′
t , includes any positive contribution from the last two cubic terms in

Equation (2.27), and ûv is the remaining higher-order components of the Reynolds stress, i.e.:

µ′t = µt −µt
k2

ε̃2 min [(c6SklSkl + c7ΩklΩkl) ,0] (4.14)

−ûv = νt
k
ε̃

[c1S12 (S11 +S22)

+c2Ω12 (S22 −S11)]

+νt

(
k
ε̃

)2 [
c4Ω12

(
S2

11 −S2
22

)

+S12 max [(c6SklSkl + c7ΩklΩkl) ,0]] (4.15)

The only other difference between the subgrid equations and the main-grid equations presented in

Section 2.3, is the simplification of the gradient production term, Pε3, which is approximated as:

Pε3 ≈ 0.0022
S̃µt k2

ε̃

(
∂2U
∂y2

)2

for R̃t ≤ 250

= 0 for R̃t > 250

(4.16)
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4.2.2 Non-Orthogonal Curvilinear Grid

There are several types of curvilinear coordinate systems. These can be divided into orthogonal and

non-orthogonal curvilinear coordinate systems, which can be further subdivided into systems where

the velocity vectors are either aligned with the coordinate system or are aligned to another (usually

Cartesian) reference frame. For example, the STREAM code [72, 73] uses a non-orthogonal grid

in which velocity vectors are aligned to a Cartesian reference frame. There are advantages to the

approach used by STREAM, as discussed in [73], where it is shown that the resulting momentum

equations can be expressed in “strong conservation form”. However, this approach can also suffer

from increased numerical diffusion when there are large skew angles between the velocity components

and the faces of the computational cells [83]. In the subgrid wall function, simplified equations are

solved for velocity components parallel to the wall within the subgrid region. This requires the use of a

coordinate system in which velocity vectors are aligned with the wall (i.e. aligned with the curvilinear

coordinate system, assuming a body-fitted grid is adopted).

The Navier-Stokes equations were derived in orthogonal curvilinear coordinates, with velocity

vectors aligned to the coordinate system, by Pope [84]. Orthogonal curvilinear coordinates are attrac-

tive in that some of the mathematics can be simplified, but this approach relies upon a grid generation

algorithm which ensures that grid lines intersect at right-angles throughout the domain, which is dif-

ficult to achieve in complex three-dimensional geometries. The alternative formulation of the Navier-

Stokes equations in a non-orthogonal curvilinear coordinate system with velocity vectors aligned to

the grid has been employed by, among others, Richmond et al. [83], Demirdžić et al. [85, 86], Gal-

Chen & Somerville [87], Mynett et al. [88] and Lee & Soni [89].

The transport equations in non-orthogonal curvilinear coordinates are long and fairly complicated.

Since it is easy to make typographical errors with such expressions, and due to the relatively unfa-

miliar nature of the notation to many readers, a comprehensive introduction and background has been

provided in Appendix B. This should enable any errors to be traced and allow the reader to follow

the derivation without recourse to additional texts. Further analysis can be found in Lien’s thesis

[73], which describes the fundamentals of the STREAM code. The conventions adopted in this thesis

follow those of Farrashkhalvat & Miles [90] whilst, in some cases, conventions used by Demirdžić

et al. have been used to allow direct comparison with equations given in their paper. For a general

introduction to tensors see, for example, Aris [91], Simmonds [92] or McConnell [93].

The three-dimensional non-orthogonal subgrid coordinate system has directional components

(ξ,η,ζ). Throughout this thesis, it is assumed that the ξ- and η-components are aligned to grid lines

which are parallel to the wall whilst the ζ-axis is usually, but not necessarily, wall-normal (i.e. not

wall-parallel), see Figure 4.2. The subgrid transport equations can all be written in the following

generic form:

ρU√
g11

(
∂φ
∂ξ

)∗
+

ρV√
g22

(
∂φ
∂η

)∗
+

ρW√
g33

(
∂φ
∂ζ

)∗
=

1
J

∂
∂ζ

(
Jg33Γ

∂φ
∂ζ

)
+C (4.17)
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Figure 4.2: Typical non-orthogonal arrangement of subgrid cells showing Cartesian x− y axis and
curvilinear ξ−ζ axes.

where φ denotes one of the subgrid parameters: U , V , k or ε̃, Γ is the diffusivity and the source

term, C, includes geometry-related source terms, the pressure gradient in the momentum equations

and production and dissipation sources in the k- and ε̃-equations. The velocity components U , V and

W act in the ξ, η and ζ directions respectively and are “physical” velocities, i.e. they have units of

(length/time). Gradient terms appearing in the convection are discretized using upwind differencing.

The asterisk (∗) denotes the fact that, for some quantities, the upstream values of φ appearing in the

discretized convection terms are transformed from the coordinate system used in the upstream cell

into the current cell coordinate system. This transformation only affects the convection of momentum

where the direction of the velocity vectors in the upstream cell may differ from those in the current

cell. Since scalar parameters (k and ε̃) are invariant to the reference frame, the upstream values of

scalars do not have to undergo such transformations. The
√

g11,
√

g22 and
√

g33 terms (square-roots

of the covariant metric tensor components) are equivalent to the physical widths of the cells in the ξ,

η and ζ directions respectively. When the above transport equation is discretized, as discussed later,

it is assumed that the widths of the computational cells in the three coordinate directions are unity,

i.e. ∆ξ = ∆η = ∆ζ = 1. It can be seen, then, that the convection terms in the above expression are

equivalent to their counterparts in Cartesian coordinates, i.e.:

ρU√
g11

∂φ
∂ξ

→ ρU
∂φ
∂x

(4.18)

The diffusion term in the above generic transport equation involves two geometric symbols: the Ja-

cobian, J, and the contravariant metric tensor, g33. For cells of unit dimensions (∆ξ = ∆η = ∆ζ = 1),

the Jacobian is simply the physical cell volume whilst the g33 tensor is equivalent to the square of the

area of the face in the wall-parallel ξ−η plane (A12) divided by the cell volume squared, i.e.:

g33 =

(
A12

J

)2

(4.19)
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In a Cartesian system this is simply the inverse of the cell height squared, g33 = (1/∆z)2, if the wall

is in the x− y plane. Substituting this into the diffusion term, we obtain:

1
J

∂
∂ζ

[
(A12)

2

J
Γ

∂φ
∂ζ

]
(4.20)

If this is discretized and integrated over the physical cell volume (∆Vol = J∆ξ∆η∆ζ), the coefficients

associated with the top and bottom nodes in the discretized equation (aT and aB) are of the form:

ΓA
L

(4.21)

where A is the cell-face area and L is the vertical distance between adjacent nodes. This is identical to

the expression obtained when a Cartesian coordinate system is employed. In the linear and non-linear

k− ε models used in the present study, the diffusivity for the wall-parallel momentum equations is:

Γ = µ+µt = µe f f (4.22)

and for the k and ε equations:

Γk = µ+
µt

σk
(4.23)

Γε = µ+
µt

σε
(4.24)

Wall-Parallel Momentum

The transport equation for the wall-parallel momentum is lengthy and complicated since, on a curved

grid, the coordinate axes to which the velocity vectors are aligned change between neighbouring cells.

The momentum equation thus has to take into account the fact that the U -velocity in one cell may be

pointing in a different direction to the U -velocity in an adjacent cell. The subgrid wall-parallel U - and

V -momentum equations are written:

ρU√
g11

(
∂U
∂ξ

)∗
+

ρV√
g22

(
∂U
∂η

)∗
+

ρW√
g33

(
∂U
∂ζ

)∗
=

1
J

∂
∂ζ

(
Jg33Γ

∂U
∂ζ

)
+C1 (4.25)

ρU√
g11

(
∂V
∂ξ

)∗
+

ρV√
g22

(
∂V
∂η

)∗
+

ρW√
g33

(
∂V
∂ζ

)∗
=

1
J

∂
∂ζ

(
Jg33Γ

∂V
∂ζ

)
+C2 (4.26)
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The source term, Ci, can be summarized as follows:

Ci = −τi j
Γm

i jgim√
gii

+ τm jΓi
m j
√

gii

︸ ︷︷ ︸
di f f usion I

+
1
J

∂
∂ζ

[
Jµe f f g33

(
U (m)

√
gii√

gmm
Γi

m3 −U
gim

gii
Γm

i3

)]

︸ ︷︷ ︸
di f f usion II

−gi j√gii
∂P

′

∂ξ j
︸ ︷︷ ︸
pressure gradient

no summation on i (4.27)

where i = 1 and 2 for the U - and V -momentum equations respectively. The velocities, (U,V,W ) in the

three component directions (ξ,η,ζ) are denoted U ( j), where the parenthesis is used to emphasize the

fact that the velocities are “physical”. The Γm
i j terms are Christoffel symbols of the second kind which

result from having a non-uniform grid distribution. These terms will be non-zero if, for example, the

grid cells are clustered together towards the wall or if the wall is curved.

Calculation of the Stress, τi j

The non-physical stress tensor, τi j, for incompressible flow is given by:

τi j = µ
(
g jmU i

,m +gimU j
,m

)
−ρuiu j (4.28)

For a linear k− ε model, the Reynolds stress, uiu j, is given by:

uiu j = −νt S
i j +

2
3

gi jk (4.29)

where the strain-rate, Si j , is:

Si j =
(
g jmU i

,m +gimU j
,m

)
(4.30)

and the velocity gradient, U i
, j:

U i
, j =

∂
∂ξ j

(
U (i)

√
gii

)
+

U (m)

√
gmm

Γi
m j (4.31)
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For the non-linear k− ε model of Craft et al. the Reynolds stress, uiu j , is given by:

uiu j = −νtS
i j +

2
3

gi jk

+c1
νt k
ε̃

(
gklS

ikS jl − 1
3

gkmglnSklSmngi j
)

+c2
νt k
ε̃

(
gklΩikS jl +gklΩ jkSil

)

+c3
νt k
ε̃

(
gklΩikΩ jl − 1

3
gkmglnΩklΩmngi j

)

+c4
νt k2

ε̃2

(
SkiΩl j +Sk jΩli

)
glmgknSmn

+c5
νt k2

ε̃2

(
gklgmnΩikΩlnSm j +gklgmnSikΩlnΩm j − 2

3
gklgmognpSkmΩonΩplgi j

)

+c6
νt k2

ε̃2 gkmglnSi jSmlSkn

+c7
νt k2

ε̃2 gkmglnSi jΩmlΩkn (4.32)

Fortunately the constant c5 in the Craft et al. model is zero so there is no need to expand one line

of the above expression. The recommended practice of including the c6 and c7 terms with the linear

component is used, as for the Cartesian formulation. For details see Appendix D.

Calculation of the Pressure Gradient

Returning to the expression for the source term, C, (Equation 4.27), the final pressure gradient term

involves gradients of the effective pressure in all three coordinate directions. For example the U -

momentum equation pressure term is given by:

gi j√gii
∂P

′

∂ξ j =
√

g11

(
g11 ∂P

′

∂ξ
+g12 ∂P

′

∂η
+g13 ∂P

′

∂ζ

)
(4.33)

where
(

P
′
= P+2ρk/3

)
is used for convenience as with the Cartesian formulation. If the subgrid

cells are arranged such that the ζ-axis is orthogonal to the wall, then the contravariant metric tensor,

g13, is zero and there is no contribution from the ∂P
′
/∂ζ term in the above expression. However, if the

cells are skewed and the ζ-axis is no longer normal to the wall, g13 is finite and the ∂P
′
/∂ζ term may

become significant. Effectively, this is saying that when the cells are skewed relative to the wall, the

pressure gradient in the ζ-direction has a component that is parallel to the wall. Whilst this may at first

seem a relatively simple problem to solve, on closer inspection it becomes apparent that one needs

to know how the pressure changes across the near-wall region (even though one does not solve for

the pressure across the subgrid). To obtain a truly accurate representation of the pressure distribution

across the subgrid for complex flows one would have to solve elliptic equations which would defeat
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the purpose of the wall function (since effectively one would be obtaining a full low-Reynolds-number

model solution). On the other hand, simply prescribing an arbitrary shape for the ∂P
′
/∂ζ profile is

unlikely to be general enough for the wall function to work in a variety of complex flows. Instead, the

following expression is solved across the subgrid:

∇P · n̂+(∇ ·ρu⊗u) · n̂ = 0 (4.34)

where n̂ is the unit wall-normal vector, u⊗u is the Reynolds stress in vector form and the gradient

operator, ∇, can be written for non-orthogonal coordinates as:

∇ =
∂ξ j

∂xi

∂
∂ξ j ei (4.35)

where ei is the Cartesian unit vector and ∂ξ j/∂xi is a property of the grid. This expression is identical

to that used in the STREAM code to evaluate the pressure on the wall surface (see Section 3.3.5).

Turbulent Kinetic Energy, k

The subgrid k-equation in curvilinear coordinates is as follows:

ρU√
g11

∂k
∂ξ

+
ρV√
g22

∂k
∂η

+
ρW√

g33

∂k
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σk

)
∂k
∂ζ

]
+Pk −ρε (4.36)

The production rate source term is given by:

Pk = −ρgimu jumU i
, j (4.37)

and is expanded fully (including all the shear and normal stress components). The expressions for

the Reynolds stresses are given above for the linear and non-linear models (Equations 4.29 and 4.32

respectively) and the velocity gradient, U i
, j, is given by Equation (4.31). The expression for the total

dissipation rate is simplified by considering only the gradient of k1/2 parallel to the ζ-axis:

ε = ε̃+2νg jm

(
∂k1/2

∂ξm

)(
∂k1/2

∂ξ j

)

≈ ε̃+2νg33

(
∂k1/2

∂ζ

)(
∂k1/2

∂ζ

)
(4.38)
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Isotropic Dissipation Rate, ε̃

The subgrid ε̃-equation in curvilinear coordinates is as follows:

ρU√
g11

∂ε̃
∂ξ

+
ρV√
g22

∂ε̃
∂η

+
ρW√

g33

∂ε̃
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σε

)
∂ε̃
∂ζ

]

+cε1 f1Pk
ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (4.39)

The source terms appearing in the ε̃-equation include production (cε1 f1Pkε̃/k), dissipation
(
cε2 f2ε̃2/k

)
,

the Yap correction (Yc) and the near-wall gradient-production source term (Pε3). The production term

has already been expanded above for the k-equation and the dissipation term does not require fur-

ther expansion. The standard Yap correction is unchanged in curvilinear coordinates and relies solely

upon the wall normal distance and values of k and ε̃. The gradient of the length scale appearing in the

differential Yap correction (see Equation 2.17) is simplified as follows:

F =
1
cl

[(
g jk ∂l

∂ξ j

∂l
∂ξk

)1/2

−dledy

]
(4.40)

≈ 1
cl

[(
g33 ∂l

∂ζ
∂l
∂ζ

)1/2

−dledy

]
(4.41)

where the additional contravariant metric tensor
(
g jk
)

is introduced into Equation (4.40) in order to

satisfy the summation convention and it is assumed that the gradient of the length scale parallel to the

wall is negligible in comparison with the gradient normal to the wall. The dledy term is identical to that

given earlier (see Equation 2.19). The same recommendations apply to the curvilinear version of the

UMIST-N wall function as with the Cartesian formulation, namely that the differential Yap correction

in the outermost subgrid cell (farthest from the wall) is set to zero initially and is re-introduced only

once the solution is nearly converged.

The full expansion of the gradient production source term, Pε3, in curvilinear coordinates is given

by:

Pε3 = 2µνt gimg jngl p (gnoUm
,o

)
,p

(
g jkU i

,k

)
,l

(4.42)

where the double-derivative of the velocity component is given by:

(
g jkU i

,k

)
,l

=
∂
(

g jkU i
,k

)

∂ξl +g jkUm
,k Γi

ml +gmkU i
,kΓ j

ml (4.43)

To simplify this term, it is assumed that only the gradient of the wall-parallel velocity components in

the wall-normal direction are significant (i.e. k = l = o = p = 3 and i = m = 1,2):

Pε3 = 2µνt

[
g11g jng33 (gn3U,3

)
,3

(
g j3U,3

)
,3 +g22g jng33 (gn3V,3

)
,3

(
g j3V,3

)
,3

]
(4.44)
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where the double-derivative term is obtained from:

(
g j3U i

,3

)
,3

=
∂
(

g j3U i
,3

)

∂ζ
+g j3 (U,3Γi

13 +V,3Γi
23

)
+U i

,3

(
g13Γ j

13 +g23Γ j
23 +g33Γ j

33

)
(4.45)

It is assumed that the derivative of the W -velocity in the wall-normal ζ-direction is negligible in

comparison with the other contributions. The above expressions require the values of strain-rates U ,3

and V,3 , the contravariant metric tensor g33 and the Jacobian, J to be calculated at the top and bottom

subgrid cell boundaries (in the ζ-direction). These are found from linear interpolation of the physical

velocity components, U and V , and the Christoffel symbols, between adjacent nodal values.

4.3 Implementation

In the previous section the subgrid transport equations were presented for a simple two-dimensional

Cartesian geometry and the more complex non-orthogonal curvilinear coordinate system. The dis-

cretization and implementation of these two sets of transport equations is fundamentally the same and

so for clarity, the following section describes the implementation of UMIST-N in a 2-D Cartesian

geometry. See Appendix E for details of the non-orthogonal case.

4.3.1 Discretized Equations

The subgrid transport equations for wall-parallel velocity, U , turbulent kinetic energy, k, isotropic

dissipation rate, ε̃, and temperature , T , can all be expressed in the general form:

ρU
∂φ
∂x

+ρV
∂φ
∂y

=
∂
∂y

(
Γ

∂φ
∂y

)
+C (4.46)

where φ is either U , k, ε̃ or T , Γ is the relevant diffusivity and C includes all the source terms.

1-D Diffusion

If one firstly considers only the diffusion and source terms in the above expression:

∂
∂y

(
Γ

∂φ
∂y

)
+C = 0 (4.47)

where C is assumed constant across each cell. Applying the finite-volume approach (see Section

3.1): integrating the transport equation across a subgrid cell and using central differencing to evaluate

gradients, the above equation becomes:

ΓnAn
(φN −φP)

∆yNP
−ΓsAs

(φP −φS)

∆yPS
+(C)P ∆Vol = 0 (4.48)
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where A is the cross-sectional area of the cell, ∆Vol is the cell volume, subscripts n and s refer to the

north and south boundaries and P, N and S to the current, northern and southern nodes, ∆yNP is the

distance from node N to node P, and ∆yPS the distance from node P to node S, as shown in Figure 4.3.

Simplifying this expression one obtains:

Dn (φN −φP)−Ds (φP −φS)+(C)P ∆Vol = 0 (4.49)

where:

Dn =
ΓnAn

∆yNP
(4.50)

Ds =
ΓsAs

∆yPS
(4.51)

Grouping coefficients of φP results in:

DnφN +DsφS +(C)P ∆Vol = (Dn +Ds)φP (4.52)

which can be expressed as:

aPφP = aNφN +aSφS +S (4.53)

where:

aN = Dn =
ΓnAn

∆yNP
(4.54)

aS = Ds =
ΓsAs

∆yPS
(4.55)

aP = aN +aS (4.56)

S = (C)P ∆Vol (4.57)

To maximize the numerical stability of the UMIST-N wall function calculation, the source term (S) is

linearized, as discussed in Section 3.1.

Convection

There are primarily two different ways in which convection can be modelled: in conservative or non-

conservative form. For a steady incompressible 2-D flow these can be written:

Conservative :
∂(ρUφ)

∂x
+

∂(ρV φ)

∂y
(4.58)

Non− conservative : ρU
∂φ
∂x

+ρV
∂φ
∂y

(4.59)
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Figure 4.3: Subgrid node and boundary notation

To convert from conservative to non-conservative form one simple expands Equation (4.58) following

the product rule and applies the continuity condition:

∂U
∂x

+
∂V
∂y

= 0 (4.60)

A conservative form must be used in compressible flows if a shock-capturing method is used, but it

also seems to be the more common treatment for convection in incompressible flow [77].

If φ represents a homogeneous scalar field (such as a uniform temperature field) then, in the

conservative form, any small imbalance in the mass flux though the faces of a cell can lead to finite

convection, despite the field being homogeneous (i.e. φ is constant but since ∂U/∂x + ∂V/∂y 6= 0

then the convection is not zero). In a standard incompressible elliptic CFD code (such as the TEAM

code), the coupling of velocity and pressure using the SIMPLE algorithm ensures that continuity is

observed in each of the grid cells, and so the problem of spurious convection does not occur. However,

the subgrid wall function is essentially a parabolic solver and only calculates the momentum parallel

to the wall. The pressure gradient is treated as a constant provided by the main-grid solution and

hence, within the current framework of the wall function, it is not guaranteed that mass continuity

is observed within each of the subgrid cells2. It is, therefore, necessary to use a non-conservative

convection scheme within the subgrid to avoid the problem referred to above, and to ensure that a

homogeneous scalar field will result in zero convection regardless of mass continuity.

Convection parallel to the wall in non-conservative form is written:

ρU
∂φ
∂x

(4.61)

The U -velocity in each of the subgrid cells is known since a transport equation for the subgrid mo-

2Continuity is, of course, satisfied over all the main-grid cells, including the near-wall cells.
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mentum parallel to the wall is solved. The gradient in φ parallel to the wall is found using upwind

differencing. Assuming that the velocity is positive, i.e. flowing from west to east:

ρU
∂φ
∂x

= ρUP
(φP −φW )

∆xPW
(4.62)

where the subgrid velocity, UP, is positive and P and W refer to subgrid nodal positions3 given in

Figure 4.4. In order to calculate gradients parallel to the wall it is therefore necessary to store each

of the subgrid profiles along the wall. This unfortunately leads to storage requirements of the subgrid

wall function approaching those of full low-Re model4. An alternative scheme was tested during the

development of UMIST-N which employed scaled main-grid values to calculate ∂φ/∂x but this was

found to be unstable (see Appendix G).
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Figure 4.4: Calculation of subgrid convection parallel to the wall

The convection term is added into the source term of the discretized transport equations by first

integrating the convection term over the subgrid control volume and introducing a minus sign, since

convection appears on the left-hand-side of the transport equation (Equation 4.46):

S = −ρUP
(φP −φW )

∆xPW
∆Vol for UP > 0 (4.63)

3Since the distance between the upstream node W and current node P is employed, ∆xPW , it is the gradient that is
upwinded rather than just the nodal values. Effectively, one is calculating the gradient in Equation (4.62) using central
differencing at the upwind western cell face. In tests with the impinging jet flow, this gave practically identical results to
those obtained by upwinding only the values of φ, i.e. using:

ρU
∂φ
∂x

= ρUP
(φP −φW )

∆xew

4The storage requirements should be somewhat less than a low-Re calculation as pressure is not stored in the subgrid
and the number of nodes employed by the wall function approach is likely to be slightly lower.
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S = −ρUP
(φE −φP)

∆xEP
∆Vol for UP < 0 (4.64)

Rearranging these expression in terms of coefficients of φP, φE and φW :

S = −ρUP
φP

∆xPW
∆Vol +ρUP

φW

∆xPW
∆Vol for UP > 0 (4.65)

S = −ρUP
φE

∆xEP
∆Vol +ρUP

φP

∆xEP
∆Vol for UP < 0 (4.66)

The source S can then be split into sU and sP terms as follows:

S = sU + sPφP (4.67)

where the coefficient associated with φP is included in sP:

sU =
ρUPφW

∆xPW
∆Vol

sP = − ρUP

∆xPW
∆Vol





for UP > 0 (4.68)

sU = −ρUPφE

∆xEP
∆Vol

sP =
ρUP

∆xEP
∆Vol





for UP < 0 (4.69)

The sP terms are always negative, and so they always increase the coefficient of φP and hence the

magnitude of the leading diagonal term in the matrix of coefficients, maximizing stability.

Convection perpendicular to the wall in non-conservative form is written:

ρV
∂φ
∂y

(4.70)

A number of different approaches to obtaining the subgrid wall-normal V -velocity profile were ex-

plored during the development of the wall function. The most general of these methods relies upon

continuity which for a Cartesian arrangement is written:

∂U
∂x

+
∂V
∂y

= 0 (4.71)

The process of calculating the wall-normal velocity, V , at each of the nodes across the subgrid is

described schematically in Figure 4.5. The process begins in the subgrid cell immediately adjacent

to the wall. It is known that the wall-normal velocity at the wall surface is zero, for a non-porous

wall, so the mass flux through the south, east and west faces are known. One can then calculate the

wall-normal velocity at the northern boundary of the wall-bounded subgrid cell from continuity. This
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calculation can be repeated for each subgrid cell from the wall to the outer subgrid boundary.
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V

Velocity through 
wall zero (Vs=0)

Wall parallel velocity
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are known

Wall−normal velocity calculated
from known Ue, Uw and Vs, 
and continuity condition

Main−grid and subgrid
wall−normal velocities
calculated at this position

UeUw

n

Figure 4.5: Subgrid and main-grid arrangement showing method for calculating the wall-normal ve-
locity from continuity condition in the subgrid cell bounded by the wall

Both subgrid and main-grid wall-normal velocities are calculated at the outer subgrid boundary:

the former using the procedure outlined above; the latter from a straightforward interpolation between

the nodal values5 . However, since the integrated subgrid mass fluxes across the east and west faces

may not be equal to the corresponding main-grid fluxes parallel to the wall, the subgrid and main-grid

wall-normal velocities may not be equal at the outer subgrid boundary (position n shown in Figure

4.5). In tests with the impinging jet flow there was, indeed, a mis-match between the main-grid wall-

normal velocity at the position n and the subgrid value calculated as above (see Figure 4.6). Clearly it

is undesirable to have inconsistency between main-grid and subgrid boundary conditions. The subgrid

V -velocity profile is therefore scaled with the ratio of the main-grid to the subgrid V -velocity:

VP = αV ∗
P (4.72)

where the constant, α is given by:

α =
V ′

n

(V ∗
n ± tiny)

−3 < α < 3 (4.73)

where P denotes the subgrid nodal value, ∗ denotes the subgrid velocities calculated from continuity

within the subgrid and the prime (′) denotes main-grid value. The constant, α, is evaluated at the outer

5The main-grid velocity only needs to be interpolated from main-grid nodal values when a collocated storage arrange-
ment is used. In a staggered grid arrangement, interpolation is unnecessary as the wall-normal V -velocity is calculated at
the cell face (position n).
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subgrid boundary (position n in Figure 4.5). The arbitrary small number tiny, which is of the same

sign as V ∗
n , is included to prevent a singularity occurring as V ∗

n approaches zero. In a simple chan-

nel flow where the wall-normal velocity is practically zero, the scaling factor can fluctuate between

comparatively large positive and negative values as the calculation converges (e.g. α = ±500) which

destabilizes the subgrid solution. To improve the stability the scaling factor α is therefore limited to

±3. In the impinging jet flow, where there is a significant wall-normal velocity, the maximum calcu-

lated value of α was approximately 1.2, and so one would not expect the limit imposed on α to have

any adverse affects in other flows. Near-wall V -velocity profiles calculated using the above approach

show good agreement with those of low-Reynolds-number models (see Figure 4.6).
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Figure 4.6: Wall normal velocity profiles at the stagnation point of the impinging jet obtained using the
linear k− ε model and standard Yap correction. —-: low-Reynolds-number model; - - -: UMIST-N
wall function ; 	 : position of main-grid cell faces. The wall-normal subgrid V -velocity is calculated
from continuity without scaling on the left-hand plot and with scaling on the right-hand plot (using
Equation 4.72). The subgrid profile is shown between the wall (at y/D = 0) and the main-grid cell
face (at y/D ≈ 0.045). On the right-hand plot the broken line of the subgrid wall-normal velocity is
obscured by the solid line of the low-Re model.

Once the V -velocity profile is known, the convection normal to the wall can be calculated. Using

an upwind scheme and assuming the V -velocity to be positive (from south to north), convection normal

to the wall is discretized as:

ρV
∂φ
∂y

= ρVP
(φP −φS)

∆yPS
(4.74)

where φP and φS are the subgrid values of U , k, ε̃ or T evaluated at the current and south subgrid nodes

(see Figure 4.3). Integrating convection over the control volume and introducing a negative sign, since

the convection term is moved from the left- to the right-hand-side of the Equation (4.46), leads to the

following expressions:

S = −ρVP
(φP −φS)

∆yPS
∆Vol for VP > 0 (4.75)

S = −ρVP
(φN −φP)

∆yNP
∆Vol for VP < 0 (4.76)
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The source S can now be split into sP and a contribution which is introduced into the coefficients aN

and aS, as follows:

sP = − ρVP

∆yPS
∆Vol

aN = 0

aS =
ρVP

∆yPS
∆Vol





for VP > 0 (4.77)

sP =
ρVP

∆yNP
∆Vol

aN = − ρVP

∆yNP
∆Vol

aS = 0





for VP < 0 (4.78)

The source term sP is always negative and hence when sP is taken over to the left-hand-side of the

discretized equation the coefficient aP (i.e. the leading diagonal elements in the matrix of coefficients)

is increased, enhancing stability.

4.3.2 Under-Relaxation

In all of the test-cases considered in this thesis it has been found that no under-relaxation of the wall-

parallel momentum or temperature equations is necessary (i.e. αU = αT = 1.0). A modest amount

of under-relaxation of the subgrid k and ε̃ equations is necessary, typically αk = αε = 0.85. No

under-relaxation is required in the subgrid temperature equation since none of the source terms (sU )

appearing in the TDMA are dependent upon the values of φP. For the momentum equations, there

is obviously some feedback through the strain-dependent Pk modifying the eddy-viscosity, and in

curvilinear coordinates there are additional geometric source terms which are added into sU , but these

effects do not appear to cause stability problems.

In each iteration of the UMIST-N wall function, the subgrid boundary conditions are first updated,

the coefficient matrix is assembled and then the matrix is solved with one sweep of the TDMA.

Because of the under-relaxation, there may be a small discontinuity in the k and ε̃ profiles at the

northern boundary during the early stages of a calculation, caused by the solution lagging behind the

updated boundary conditions. This discontinuity is responsible for the stability problems encountered

when using the differential length-scale correction at the start of a new calculation, when k and ε̃
boundary conditions are changing rapidly (as discussed in Section 4.2).
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4.3.3 Boundary Conditions

For each variable, two boundary conditions are required for the one-dimensional subgrid equations.

On one side, the subgrid domain is bounded by a wall (node i = 1), and on the opposite side it joins the

main-grid domain (node i = n). The subgrid transport equations are solved from nodes i = 2 to (n−1)

inclusive. In addition, at the ends of a wall, for example on the axis of symmetry in the impinging jet

flow, boundary values need to be supplied in the wall-parallel direction to allow the convection terms

to be evaluated.
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subgrid
boundary
nodes

main grid
values at
N and P
interpolated
here for
boundary
condition
on subgrid

Figure 4.7: Subgrid boundary conditions

Wall Boundary (i = 1)

The boundary conditions for the subgrid nodes on the wall are identical to those applied in a low-

Reynolds-number solution. U , k and ε̃ all become zero at the wall (i.e. U1 = k1 = ε̃1 = 0). There are

two common thermal wall boundary conditions: prescribed wall temperature or prescribed wall heat

flux. The boundary condition in the former case is trivial since the temperature at the subgrid boundary

node is simply set to a prescribed value (T1 = Twall ). The wall heat flux can then be calculated from

Fourier’s law, since the near-wall subgrid cell is within the viscous sublayer. For a wall with constant

heat flux, the calculated flux to the boundary is removed (by setting aS = 0 for a wall on the south of

the cell) and the given flux is added in as a source term. The wall temperature can then be calculated

from Fourier’s law.

Free Boundary (i = n)

The values of U , k, ε̃ and T prescribed at the outer (free) boundary, where the subgrid meets the main

grid, are interpolated between the two near-wall main-grid nodal values, at P and N, as shown in



80 CHAPTER 4. Subgrid-Based Wall Function: UMIST-N

Figure 4.7. Although this interpolation may not be desirable in terms of accuracy – assuming a linear

variation from node P to node N – the alternative of extending the subgrid only to the main-grid nodal

position P (and hence using the calculated values at node P as boundary conditions for the subgrid

calculation) introduces significant problems with the calculation of cell-averaged quantities (e.g. Pk,

ε). The linear interpolation for the boundary condition does cause a small discrepancy between the

main grid and subgrid velocities at P in the log-law plot for a channel flow (see Figure 4.14). Vari-

ous other interpolation functions were tested but none provided a significant improvement in results

whilst maintaining generality. Since k and ε̃ values are also linearly interpolated, the eddy viscosity(
µt = cµ fµk2/ε̃

)
will not be a linear interpolation of the two near-wall main-grid nodal values. Again,

a number of different formulations have been tested, for example, by interpolating the viscosity and

obtaining k or ε̃ from this boundary condition for µt , but none of these has been found to provide any

improvement upon the simpler practice of interpolating the boundary condition for k and ε̃ and then

calculating µt . Assuming a linear variation of U , k, ε̃ and T between nodes P and N is, moreover,

consistent with the assumptions used in the main-grid.

Wall Ends

A typical example of a wall-end boundary is shown in Figure 4.8. In this case, since the boundary

coincides with the edge of the domain, additional subgrid nodes are placed on the boundary itself.

Subgrid transport equations are not solved for these boundary nodes: their only purpose is to provide

boundary values for computing the convection parallel to the wall and for the calculation of the sub-

grid wall-normal velocity (for which the mass flux through the boundary face needs to be known).

Subgrid end-of-wall boundary values are set in exactly the same manner as in the main-grid calcula-

tion. For the axisymmetric case shown in Figure 4.8 this would involve zero-gradient conditions for

the wall-normal velocity, k, ε̃ and T and zero wall-parallel (radial) velocity for the nodes on the axis

of symmetry.

4.3.4 Subgrid Residuals

The subgrid nodal residual is calculated as follows:

Rφ = aPφP − (aNφN +aSφS + sU) (4.79)

where φ is the relevant variable (U , k, ε̃ or T ). The total subgrid residual for each block is calculated

by summing
∣∣Rφ
∣∣ over each subgrid domain. One could non-dimensionalize the subgrid residuals and

place an upper limit on their value so that the calculation would not be considered converged unless

residuals fell below that value. In practice, however, if subgrid residuals are not falling, the residuals

in the main-grid will be increasing. Monitoring subgrid residuals is useful, however, in a multiblock

calculation when one can identify which wall is causing convergence problems. Additionally, subgrid

residuals can be useful if, for instance, one wants to freeze the main-grid solution but continue to run
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Figure 4.8: Arrangement of subgrid nodes at the end of a wall.

the subgrid calculation to ensure that it converges.

4.3.5 Calculation of Wall-Function Parameters

In standard wall-function treatments, such as that proposed by Chieng & Launder [49], the wall func-

tion provides values for:

• wall shear stress, τwall

• average kinetic energy production, Pk

• average dissipation rate, ε

• nodal dissipation rate, εP

• wall temperature, Twall , or wall heat flux, qwall

In such treatments, the momentum equation is solved in the near-wall cell with τwall included as a

source term (having suppressed the internally calculated flux to the wall by setting aS = 0 for a south-

ern wall). The kinetic energy equation is solved in the near-wall cell with production and dissipation

terms replaced by Pk and ε respectively, and the diffusive flux is set to zero (aS = 0 as before). The

dissipation rate equation is not solved in the near-wall cell, but instead the value εP is prescribed at

the near-wall node.

In the UMIST-N wall function, momentum, kinetic energy and isotropic dissipation rate equations

are solved in the near-wall cells. There is thus no need to prescribe εP. Such an approach might lead

to instabilities in any case, since the ε̃-equation solved in the subgrid would be strongly linked to

εP through the boundary conditions. The new wall function therefore needs to provide values of the

following parameters:
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• wall shear stress, τwall

• average kinetic energy production, Pk

• average total dissipation rate, ε

• average production rate of ε̃, (Pkε̃/k)

• average dissipation rate of ε̃, ( f2ε̃2/k)

• average gradient production Pε3

• average near-wall length scale correction (Yap correction), Yc

• wall temperature, Twall , or wall heat flux, qwall

The wall shear stress, τwall , is calculated by assuming a linear velocity profile between the subgrid

node adjacent to the wall and the wall itself (i.e. assuming that the near-wall subgrid cell is well

within the viscous sublayer). For a stationary wall in 2-D Cartesian coordinates this is simply:

τwall = µ
UP

yP
(4.80)

where subscript P denotes the value at the subgrid node adjacent to the wall and µ is the molecular

viscosity. In a similar manner, the heat flux, qwall , can be calculated from Fourier’s heat conduction

law:

qwall = −λ
∂T
∂y

= −µcp

σ
∂T
∂y

(4.81)

which can be rearranged to give:

Twall = TP +
σqwall yP

µcp
(4.82)

or:

qwall =
µcp(Twall −TP)

σyP
(4.83)

As with standard wall functions, the subgrid values of τwall and qwall replace the diffusive fluxes in

the main-grid and so one should set aS = 0 in the momentum and temperature equations.

Average source terms for k and ε̃ are evaluated by assuming the subgrid values to be constant over

the extent of each subgrid cell and equal to the subgrid nodal value. If the subgrid node on the wall

surface is i = 1 and that on the outer subgrid boundary node i = n, then the average production term

for a simple 2-D Cartesian grid is given by:

Pk =
∑n−1

i=2 (Pk∆y)i

∑n−1
i=2 (∆y)i

(4.84)

where (Pk∆y)i is the product of the production rate and the cell thickness for subgrid cell i, and

∑n−1
i=2 (∆y)i is the total thickness of the subgrid (which is equal to the thickness of the main-grid cell).
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The main-grid momentum and heat fluxes to the wall are replaced by values calculated from the

subgrid solution (τwall and qwall ). To be entirely consistent with this treatment one should also replace

the diffusive fluxes of k and ε̃ to the wall in the main-grid calculation with values obtained from the

subgrid solution. Tests in channel and impinging flows showed that these fluxes are negligible in

comparison to other terms in the main-grid k and ε̃ equations and hence one can just set aS = 0 (for a

southern wall) in the main-grid near-wall cell for the k and ε̃ equations.

When the NLEVM is used, one needs to evaluate strain-rates and vorticity at grid nodes in order

to calculate nodal values of the cµ function and the non-linear stress components, described in Section

2.3. Throughout the main-grid flow domain the nodal strain-rates and vorticity are calculated based

on values of velocity at the cell boundaries, assuming a linear velocity profile across the cell. Whilst

this practice may be sufficiently accurate across most of the flow domain, the assumption of a linear

velocity profile across the near-wall main-grid cell is inappropriate if one is using wall functions. For

the near-wall main-grid cell, the subgrid velocity distribution gives a more accurate picture of the

strain-rate and vorticity at the main-grid node P. Therefore, the subgrid strain-rates and vorticity are

evaluated and interpolated to the main-grid node position. These subgrid values are then used to find

the value of cµ and the non-linear stress components at the main-grid node P.

4.3.6 Generating the Subgrid Mesh

The subgrid transport equations described in Section 4.2 are solved over an algebraically generated

grid within the main-grid near-wall cell. In order to obtain sufficient resolution of the peaks of k and

ε̃ it is necessary to cluster subgrid nodes towards the wall. A schematic diagram of a simple 2-D

Cartesian subgrid is given in Figure 4.9. The distance from the wall to the face of subgrid cell i is

given by yi and to the subgrid node yp
i . The locations of the bottom and top of the subgrid (locations

y1 and y7, respectively) are known from the main-grid coordinates. Between nodes i = 1 and i = 7

(from the wall to the top edge of the domain), the subgrid is expanded with a given ratio, r, according

to:

∆yi = r∆yi−1 (4.85)

where ∆yi is the cell width for node i. The distance between the first and last boundary locations

consists of the sum of the control volume widths:

yn − y1 = ∆y+ r∆y+ r2∆y+ ...+ r(n−3)∆y

=
n−3

∑
m=0

rm∆y (4.86)

where n is the number of nodes, in this case n = 7. The width of the smallest control volume

(∆y = y2 − y1) is then given by:

∆y =
yn − y1

∑n−3
m=0 rm

(4.87)
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Figure 4.9: Two-dimensional Cartesian subgrid mesh showing node numbers and cell widths.

One can then calculate the position of the cell faces in recursive fashion:

ym = ym−1 + r(m−2)∆y form = 2,3,4...(n−2) (4.88)

Finally, the subgrid nodes are positioned in the centre of the cells, i.e.:

yp
m =

(ym + ym−1)

2
form = 2,3,4...(n−1) (4.89)

Following common practice, it should be ensured that the solution is independent of the subgrid

mesh. The expansion ratios and number of subgrid nodes should be adjusted until there is no signifi-

cant difference in computed results. In tests with the impinging jet flow where the main-grid near-wall

node y+ values varied from 230 at the stagnation point to 35 at 6 diameters downstream, a minimum

of 30 subgrid cells with an expansion ratio of 1.15 was required to achieve a subgrid-independent

solution. However, relatively large expansion ratios were found to introduce stability problems with

the NLEVM and, in practice, a maximum ratio of 1.10 was used with a corresponding slight increase

in the number of subgrid nodes to maintain the same near-wall y+values.

4.3.7 Multiblock Implementation

In order to generate structured grids around complex shapes it is sometimes necessary to decompose

the grid into a number of blocks. This approach was used in the STREAM code to study the flow

around the Ahmed car body (see Figure 7.10). Since the UMIST-N wall function uses wall-parallel

gradients for convection and for the calculation of the wall-normal velocity from continuity, it is nec-

essary to use a multiblock implementation of the wall function if walls extend over more than one

block. In order to implement the multiblock wall function in an efficient manner, it is useful to con-

sider the issues of block addressing, halo nodes and block-to-block swapping of boundary conditions

at an early stage in the design of the wall-function code.

Communication of data (i.e. nodal values of U , V , W , k, ε̃ and T ) between blocks is accomplished

using halo cells. These are additional nodes tagged on at the end of a block which have physical
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Figure 4.10: Arrangement of subgrid and main-grid nodes at a block interface. The top diagram
shows the nodes associated with Block 1, including the halo nodes. The lower diagram shows the
nodes associated with Block 2.
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Figure 4.11: Three-dimensional block arrangement showing face labels, main-grid coordinates (in
upper-case bold) and subgrid coordinates for each face (lower-case italic).

locations identical to nodes in the neighbouring block (see Figure 4.10). Transport equations are not

solved for halo node values. Instead, at the beginning (or end) of each iteration, the values of U , V , W ,

k, ε̃ and T at the halo nodes are updated from the neighbouring block’s values. Halo nodes therefore

provide boundary conditions for the cells internal to a block, for which transport equations are solved.

The STREAM code uses a total of three layers of halo nodes, as shown in Figure 4.10. Two layers

of nodes are required for the calculation of convection using quadratic differencing. The final layer

on the cell boundary is only used to define the edge of the domain. The STREAM code version of

the UMIST-N wall function was designed with exactly the same halo arrangement as the main-grid

code (i.e. three layers of cells). This was not strictly necessary, since the UMIST-N wall function only

employs upwind differencing, but it was conceptually simpler to keep the same domain size.

Wall functions may be employed on many faces within each block (north, south, east etc.). Rather

than code six different versions of the UMIST-N wall function, one for each face, a single solution

procedure is coded with a local subgrid coordinate frame. This local coordinate frame is specified so

that the subgrid ζ-direction is always in the non-wall-parallel direction and increases with distance

from the wall (in most cases this means simply that the subgrid ζ-axis is wall-normal and points into

the domain from the wall surface). Figure 4.11 shows a single main-grid block with coordinate frame

denoted in upper-case bold (I, J, K). Associated with each of the faces of the block are also shown

subgrid coordinate frames, denoted in lower-case italic (i, j,k).

To specify fully how two main-grid blocks are joined together, one needs to identify the faces
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through which the two blocks are mated and also how the coordinate frames transform between

blocks. For instance, the entire south face on Block (1) could be attached to the entire east face

on the neighbouring Block (2), with the coordinate frame in Block (1), (I, J, K), being equivalent to

the coordinate frame (–K, I, –J) in Block (2). This specification will be well known to those already

using multiblock domain decomposition. In addition to these details, however, one has to be careful

when walls continue over two or more neighbouring blocks that the coordinate frames used in the

subgrid wall function domains are correctly matched together (bearing in mind that there is a different

subgrid coordinate frame according to the face on which the wall is positioned). This is particularly

important as the UMIST-N wall function uses grid-aligned velocity vectors so that the U -velocity in

one block may be equivalent to the V -velocity in a neighbouring block. It is not difficult to work out

the permutations of block faces, main-grid coordinate frames and subgrid coordinate frames, and the

particular algorithm used will depend on how the multiblock domain decomposition is already coded

for the main-grid. In order to provide some assistance to future researchers, a simple cut-out diagram

is provided in Figure 4.12 which can be glued together into a cube. The faces of the cube give the

subgrid i- and j-axes and the k-axis always acts into the cube. The main-grid (I, J, K) are also pro-

vided along with the names of the block faces. In the authors’ experience, such cubes are invaluable

for examining how to specify the correct transformation between two subgrid coordinate frames.

Finally, it should be mentioned that when coding the subgrid wall function it is inefficient to

store values in multi-dimensional arrays and specify a particular subgrid node directly from its wall

number6 and its (i, j,k) coordinates. This approach may lead to excessive storage requirements for

the subgrid arrays when, for instance, the i-axis on one wall contains twice as many nodes as the

i-axis on another wall. Instead, an efficient subroutine or function can be written which converts wall

number and (i, j,k) coordinates into a single subgrid node number, say (ns), which then increments

sequentially from 1 to nsmax, where nsmax is the total number of subgrid nodes. The subgrid data is

then stored as one-dimensional arrays with dimension nsmax, rather than as multi-dimensional arrays

of size (imax× jmax× kmax) times the number of walls.

4.3.8 Solution Sequence

The first step in the subgrid wall function is to define the subgrid mesh and any geometric parameters

that are used by the subgrid wall function (a particular consideration if one is using non-orthogonal

curvilinear coordinates). This is performed only once, at the beginning of a calculation, just after

the main-grid mesh has been defined. In each subsequent main-grid iteration, before the main-grid

coefficient matrices are assembled, the following sequence of events is followed:

1. Initialize the one-dimensional subgrid variable arrays from a previous subgrid iteration, previ-

ous subgrid solution (used as a starting point) or initial profile.

6where each wall face in each block is assigned sequentially a separate wall number.
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Figure 4.12: Unfolded representation of three-dimensional block arrangement showing face labels,
main-grid coordinates (in upper-case bold) and subgrid coordinates for each face (lower-case italic).
Once the diagram is cut-out and glued together into a cube with the writing on the outside of the box,
the subgrid k-axis always acts in the direction into the box

2. Calculate the subgrid eddy-viscosity, µt , and source terms for the wall-parallel momentum, k, ε̃
and temperature equations.

3. Assemble the subgrid coefficient matrices for each of the transport equations and solve each in

turn with one sweep of the TDMA.

4. Calculate wall-function parameters to be passed to the main-grid flow solver (τwall , average

source and sink terms in the k and ε̃ equations, and Twall or qwall ).

5. Repeat steps 1 – 4 for each of the main-grid cells along the length of the wall.

It is important, especially when using the strain-dependent cµ function with the Craft et al. NLEVM

that boundary conditions are only updated after cµ and the non-linear stresses have been calculated.

Otherwise, the updated velocity boundary value can lead to significant strain-rates across the sub-

grid cell adjacent to the boundary which may cause instability through the feedback mechanism of

(cµ → µt → S → cµ), as mentioned in Chapter 2.

4.4 Validation: Channel Flow Results

One advantage of the UMIST-N wall function is that it is relatively straightforward to reconfigure the

code to run as a stand-alone 1-D parabolic solver, which can then be tested in simple flows to ensure

that it has been coded correctly. The wall-function code was adjusted to run a fully-developed channel

flow simulation with the subgrid region extending across the whole flow domain. The Reynolds
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number, based on bulk velocity and channel width (wall to wall), was Re = 100,000. Results were

compared to low-Reynolds-number model results obtained from the 2-D elliptic solver, TEAM, using

the Launder-Sharma k− ε model. An identical distribution of subgrid nodes was used as for the low-

Re model with 110 nodes, clustered towards the wall. The wall function and low-Re model results

were found to be identical (Figure 4.13).
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Figure 4.13: Comparison the semi-logarithmic velocity profiles for a fully-developed channel flow
at Re = 100,000; —-: TEAM 2-D elliptic solver; symbols: UMIST-N wall function configured as
parabolic solver.

Following these tests, the performance of the UMIST-N wall function was assessed in a 2-D

channel flow with periodic inlet and outlet boundaries and a Reynolds number of Re = 100,000.

Calculations were made using the TEAM code with the linear Launder-Sharma k − ε model [13].

QUICK differencing was employed for convection of momentum and PLDS for k and ε̃. A grid

with 110 nodes for the half-channel width in the wall-normal direction was used for low-Re model

simulations and results were tested to ensure that they were fully grid-independent. Two different grid

arrangements were used for the wall-function calculations which corresponded to near-wall nodal

y+ values of approximately 30 and 80. Across the subgrid domain, 40 nodes were used with an

expansion ratio of 1.1 which was sufficient to obtain a subgrid-independent solution. Figure 4.14

shows the profiles of U+ versus y+ obtained using the UMIST-N wall function for the two high-Re

grids against the results obtained from the low-Re model and law-of-the-wall profiles.

The UMIST-N wall function results for the channel flow, shown in Figure 4.14, are in good agree-

ment with the low-Re results for both near-wall cell sizes. A small discrepancy in the near-wall

main-grid nodal velocity is due to the linear interpolation between the two near-wall nodes, used to

obtain the subgrid boundary condition. Several other methods of interpolating have been tested for
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Figure 4.14: UMIST-N wall function predictions of the velocity log-law with a near-wall grid arrange-
ment of y+ ≈ 30 (top) and y+ ≈ 80 (bottom).
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the subgrid boundary condition, but none provided any significant improvements without diminishing

the generality of the wall function. In any case, within the near-wall cell the subgrid solution provides

a more accurate prediction of the velocity profile and this can be used to gain a better picture of the

velocity close to the wall if necessary. The results also show little dependence upon the size of the

near-wall main-grid cell.

The above tests were carried out using the TEAM code. The UMIST-N wall function implemen-

tation in the STREAM code was also tested in a fully-developed channel flow before calculations of

the Ahmed body were undertaken. The wall function was applied to each of the six possible faces of

a block (north, south, east etc.) and results compared to those obtained using a low-Re model. Both

linear and non-linear k− ε models were assessed and skewed grids were used to ensure that the cal-

culated subgrid geometric parameters (metric tensors, Jacobians etc.) were correct. The multiblock

wall function implementation was also tested by setting up a fully-developed channel flow over two

blocks. The relative orientation of the two blocks was then changed to ensure that this had no effect

on results.



Chapter 5

Impinging Jet Flow

5.1 Introduction

The axisymmetric impinging jet flow is geometrically simple. Figure 5.1 shows a schematic of the

particular arrangement considered in the current work. The fully-developed pipe flow exits the pipe

of diameter D at a height of 4 jet diameters from the wall (H/D = 4), impinges onto the wall surface

and spreads radially outwards. Figure 5.2 shows a typical velocity vector plot. The Reynolds number

of the flow, based on the bulk inlet velocity and pipe diameter, is Re = 70,000 and conditions were

chosen to match the experimental measurements of Baughn et al. [94] and Cooper et al. [95].

There have been numerous computational and experimental studies of the impinging jet and this

reflects the range of related industrial flows and the usefulness of this particular geometry for testing

turbulence models. Jet impingement causes high levels of heat-transfer coefficient near the stagnation

point and is used in industrial applications where heating, cooling or drying processes are required.

Flow impingement occurs on the upstream face of bluff bodies, such as the simplified car body ex-

amined in Chapter 7. As a test case, the impinging jet offers insight into the behaviour of turbulence

models in flow regimes far removed from the traditional simple shear flow. In an axisymmetric im-

"#"$"$"#"$"#"$"#"$"#"$"#"$"#"$"#"$"#"$"$"#"$"#"$"#"$"#"$"#""#"$"$"#"$"#"$"#"$"#"$"#"$"#"$"#"$"#"$"$"#"$"#"$"#"$"#"$"#"
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Figure 5.1: Impinging jet flow domain and boundary conditions.
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pinging jet, there is significant irrotational straining near the stagnation point and, near the edge of

the impinging jet, there is strong streamline curvature. Moving further downstream, the flow tends

towards a simple radial wall jet, but one in which the maximum shear stress occurs outside the wall

region [95].
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Figure 5.2: Predicted velocity vectors for the impinging jet flow (Re = 70,000, H/D = 4) using the
Craft et al. NLEVM

For the purposes of examining the processes involved in the impinging jet flow, the flow domain

can be decomposed into three regions. These regions are identified on the plot of experimental Nusselt

number1 shown in Figure 5.3. In the first region, on the axis of symmetry (r/D = 0, where r is

the radial distance from the axis of symmetry) the mean shear strain is zero and turbulence energy

production is from normal straining. The heat transfer rate is greatest at the stagnation point, with

Nu at its maximum. Since the jet considered in the current calculations is only four diameters away

from the wall, there is insufficient height for significant mixing to occur with the surrounding fluid

between the jet inlet and the wall. Therefore the fluid convected into the near-wall region has a low

turbulence intensity (similar to that in the fully developed pipe flow) and is at a temperature close

to the inlet condition. The thermal boundary layer is confined to the width of the viscous sublayer

which is itself thin at this point. In the region between the axis of symmetry and r/D ≈ 1, the RMS

fluctuating velocity component in the wall-normal direction
(

v
′
)

exceeds that parallel to the wall
(

u
′
)

in contrast to fully-developed channel flows where the u
′

component is greater than v
′

(see Figure

1.2). The turbulence length scale (k3/2/ε) near the wall is strongly affected by length scales of the jet

turbulence, retaining a memory of upstream history, whereas in simple shear flows the length scale is

a function only of the wall distance. Convective transport of turbulence energy towards the stagnation

point is also important (i.e. the flow is not in local equilibrium). The Nusselt number steadily drops

1The Nusselt number is a dimensionless heat transfer coefficient proportional to the ratio of the heat transfer by convec-
tion to the heat transfer by conduction, which in the impinging jet flow is evaluated as:

Nu =
hD
λ

=
qwallDσ

µcp (Twall −Tin)
(5.1)

where D is the jet diameter and Tin the inlet temperature.
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from its maximum at the stagnation point towards a minimum at r/D ≈ 1. In this region, strong

flow curvature has a stabilizing effect on the flow, reducing turbulence energy2 . In the second region,

further downstream (1 < r/D < 2), the Nusselt number rises up to a secondary peak. Here, there is

significant acceleration of the fluid away from the stagnation point which in itself might be expected to

cause a reduction in turbulence levels. However, as one moves away from the stagnation point (where

turbulence levels are low) high near-wall shear strains develop which generate turbulence energy. In

addition, the mixing layer around the edge of the jet reaches the wall in this region, bringing with it

higher levels of turbulence energy. The fluctuating velocity parallel to the wall also shows an increase

relative to the normal component between r/D = 1 and 2 (Figure 5.13). In the radial-wall-jet region

(r/D > 2), the Nusselt number decreases at a gradually decreasing rate as the thickness of the viscous

and thermal boundary layers increase and the radial velocity falls as the wall jet spreads. The near-

wall kinetic energy steadily decreases although the maximum turbulent stress levels are more than

twice as high as in the corresponding plane wall jet [65, 95].

Figure 5.3: Experimental Nusselt number data for the impinging jet (Re = 70,000 and H/D = 4) from
Baughn et al. [94] showing the three main flow regions.

5.2 Previous Experimental and Computational Studies

It is well known that the low-Re linear k− ε model overpredicts the level of turbulent kinetic energy

at the stagnation point in impinging flows. The Yap correction [64] and the more recent differential

2If one considers the kinetic energy production due to shear stress in this region (in 2-D Cartesian coordinates), the
production of k due to shear stress, Pkuv = −ρuv (∂U/∂y+∂V /∂x), where the shear strain rates ∂U/∂y and ∂V/∂x are of
opposite sign, tending to reduce Pk and hence k. Normal strain rates ∂U/∂x and ∂V/∂y are also of opposite sign and hence
kinetic energy production due to normal stresses u2 and v2 are of the opposite sign, further diminishing Pk (see Bradshaw
[96]).
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length-scale correction of Iacovides & Raisee [66, 67] improve this behaviour somewhat, although

heat transfer rates at the stagnation point are still overpredicted by a factor of nearly two (see results

below). An explanation for the behaviour of the linear k− ε model was provided by Kato & Launder

[97] who showed that using this model the production rate of kinetic energy can be written as:

Pk = −ρuiu j
∂Ui

∂x j
= ρcµεS2 (5.2)

Near the stagnation point, the irrotational strain field leads to a high value of the dimensionless strain

invariant, S, which in turn leads to a large Pk. Kato & Launder suggested a modified production term

in which S2 is replaced with ΩS. Since the vorticity invariant, Ω, is small in irrotational straining,

the production term takes a more realistic value. Although the Kato-Launder modification improves

the k− ε model predictions in impinging flows, it was suggested that their correction should not be

considered a permanent fix since it would lead to an overly large production in rotating and swirling

flows. An alternative remedy of the stagnation-point problem by Durbin [98] imposed a limit on

the turbulence time-scale (T = k/ε) (where T is used to define the eddy-viscosity and appears in the

production and dissipation terms of the ε-equation). Abdon & Sundén [99] showed that the Durbin re-

alizability condition improves Nusselt number predictions using a linear k− ε model in impinging jet

flows and Behnia et al. [100, 101] demonstrated that the elliptic-relaxation
(
v2 − f

)
model incorpo-

rating the correction also performs well. In the NLEVM approach, contributions from the non-linear

terms result in a better representation of the normal stresses and hence improve the stagnation-point

behaviour. Differential stress models involve the solution of transport equations for the normal stresses

which enables more elaborate methods of overcoming the stagnation-point problem to be employed

(see [65]).

There have been a number of previous numerical simulations of impinging jet flows using wall

functions. Heyerichs & Pollard [102] compared the performance of six low-Reynolds-number models

and three wall functions in a 2-D impinging jet flow with Re = 10,000 and H/D = 2.6. No definitive

conclusions about the superior performance of any one of the wall functions was made, except for

the general comment that wall functions are unsuitable for complex flows where the assumptions

used in their derivation are not valid. They also noted that the low-Re k −ω model gave slightly

better predictions than the low-Re Launder-Sharma k− ε model, although they also showed that the

Yap correction had a negligible effect on the Nusselt number at the stagnation point. Amano &

Brandt [103] studied a range of impinging jet nozzle-to-plate distances, ranging from 2 to 40 nozzle

diameters, and Reynolds numbers from 50,000 to 300,000. They found that good agreement could be

obtained between experimental and numerical predictions for the velocity, pressure and skin friction,

using a linear k− ε model with the Chieng & Launder wall function. Further papers by Amano &

Jensen [104] and Amano & Sugiyama [105] showed that some small improvements could be made

in predicting the stagnation-point heat transfer by solving transport equations for both k and ε in the
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near-wall cell3. The results of these papers contrast with the more recent findings of Ashforth-Frost

& Jambunathan [106] who found that for a confined impinging jet at a Reynolds number of 20,000

and a nozzle-to-plate spacing of 2 jet diameters, the kinetic energy near the stagnation point was

overpredicted by a factor of 9. They used the PHOENICS code with a linear k− ε model and a wall

function based on the velocity log-law and local-equilibrium assumptions. The poor performance

of the numerical simulation in the stagnation region was attributed to both the isotropic linear eddy-

viscosity model and the wall function. Bouainouche et al. [107] evaluated the performance of a

simple wall function, based on the velocity log-law and prescribed nodal values for k and ε, and a

“generalized” wall function in which a simplified transport equation for k was solved in the near-wall

cell with cell-averaged production and dissipation rate source terms. Both approaches were shown to

have shortcomings in the prediction of wall shear stress for impinging jet flows, although the latter

model showed a lower sensitivity to changes in the near-wall grid spacing. A hybrid wall function

was proposed which switched from the generalized wall function, used in the impingement zone,

to the simple wall function, used downstream, at an ad hoc prescribed radial distance. Vieser et

al. [108] studied a range of heat transfer problems with the CFX code using the k− ε, k−ω and SST

turbulence models with wall functions. They found that good agreement between computational and

experimental results could be obtained for H/D = 2 and Re = 23,000 using a linear k− ε model with

the scalable wall function (a reoptimized version of the wall-function proposed by Grotjans & Menter

[47]).

In the present study, calculations are compared to the experimental heat transfer data of Baughn

et al. [94] and the velocity and Reynolds stress data of Cooper et al. [95]. Jambunathan et al. [109]

provide a comprehensive review of experimental heat transfer measurements for the impinging jet

flow. The paper by Behnia et al. [101], which focuses mainly on the behaviour of the elliptic relax-

ation turbulence model in impinging flows, noted that there is considerable scatter in experimental

measurements of the Nusselt number. They selected five recent sets of experimental Nusselt number

data for H/D = 6 and Re = 23,000 and found differences of approximately 20-25%. These were

attributed to differences in inlet conditions.

5.3 Computational Details

5.3.1 Models Used

Both the linear k − ε and cubic non-linear k − ε models presented in Chapter 2 were assessed in

the impinging jet flow. For both models, results obtained using a low-Reynolds-number approach

were compared to those obtained with four standard wall functions: Launder & Spalding (TEAM),

simplified Chieng & Launder (SCL), Chieng & Launder (CL) and Johnson & Launder (JL), and

with the new UMIST-N wall function. Some modifications to the expression for the cell-averaged

3Whereas in the Chieng & Launder approach, a transport equation is solved for k, but ε is specified at the near wall node
from local-equilibrium assumptions.
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production of turbulent kinetic energy, Pk, used in the Chieng & Launder wall function, were also

tested. The influence of the standard Yap correction and the differential length-scale correction were

investigated with both models and two different cµ functions were tested with the NLEVM. In the

wall-function calculations, the sensitivity to changes in the size of the near-wall control volume were

also assessed using different near-wall grid arrangements. In all of the results shown for the UMIST-N

wall function, the same turbulence model was used in the subgrid as in the main-grid.

5.3.2 Numerical Methods

Calculations were made using the TEAM code discussed in Chapter 3. In all calculations, diffusion

terms were approximated using central differencing, the QUICK scheme was used for the discretiza-

tion of convection in the momentum and temperature equations and PLDS was used for k and ε.

Near the entrainment boundary, QUICK was found to introduce some instability problems. PLDS

was therefore used for all parameters (U , V , T , k and ε) in a region along the entrainment boundary

extending roughly 0.5D into the flow domain. The dynamic and thermal fields are uncoupled in the

impinging jet flow (i.e. the temperature field has negligible effect on fluid density) and therefore the

thermal field was solved only once the dynamic field had converged. Typical under-relaxation factors

for the main-grid code are shown in Table 5.1 and those for the subgrid solution in the UMIST-N wall

function in Table 5.2.

U V P k ε T NL

0.35 0.35 0.5 0.45 0.45 0.60 0.4

Table 5.1: Under-relaxation factors used in the impinging jet flow with low-Reynolds-number models,
standard wall-function calculations and in the main-grid with UMIST-N wall function calculations
(NL refers to the Non-Linear EVM terms).

U V k ε̃ NL

1.0 1.0 0.8 0.8 1.0

Table 5.2: Under-relaxation factors used for the subgrid transport equations with the UMIST-N wall
function in the impinging jet flow.

Calculations involving the NLEVM with the UMIST-N wall function were started from an initially

quiescent flow field using the linear k− ε model and Yap correction across the subgrid domain and

NLEVM with differential length-scale correction across the main-grid domain. After 500 iterations

(approximately one third of the overall calculation time) the NLEVM and differential Yap correction

were activated across the subgrid. Convergence was reached when the total non-dimensionalized

residuals for the momentum and temperature equations were below 5× 10−4 . It was confirmed that

reducing residuals below this value had no effect on results. Calculations involving the differential

Yap correction were, in general, less stable than those with the standard Yap correction and required

greater under-relaxation in order to reduce residuals to the required limit. Greater under-relaxation
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of the subgrid k and ε̃ was also required with the differential Yap correction as the near-wall cell size

was increased. For the largest cell size (DX = 500) the under-relaxation factor for the subgrid k and

ε̃ equations was α = 0.5.

5.3.3 Domain and Grid

The flow domain for the impinging jet with a jet discharge height of 4 jet diameters was 4.5D in the

wall-normal direction, which included 0.5D of inlet pipe length. A short length of pipe wall was

included in the flow domain to reduce instability arising from the entrainment boundary near the jet

inlet. In the radial direction, the domain extended 7 jet diameters.

The low-Reynolds-number grid, which used 90× 70 (axial × radial) nodes, is shown in Figures

5.4 and 5.5. The y+ values (calculated from y+ = c1/4
µ k1/2y/ν) varied according to the turbulence

model used, and are summarized in Table 5.3.

Turbulence Model max. y+at 5th node max. y+at 10th node
from the wall from the wall

Linear k− ε 3 13
NLEVM 5 17

Table 5.3: y+ values for the 90×70 low-Reynolds-number grid

A grid-dependence study was performed with a refined 120× 90 grid (see Figure 5.6). This cor-

responded to an increase in the number of grid nodes of 70%, although the flow domain was also in-

creased from 7 to 10 jet diameters in the wall-parallel direction. A small difference of 2% in the Nus-

selt number, limited to the region near the stagnation point (r/D < 0.3), was observed with the lin-

ear k− ε model (see Figure 5.7). In the refined grid the first 10 cells were within y+ ≤ 3.

The high-Reynolds-number grids used with wall functions consisted of 45× 70 (axial × radial)

nodes, see Figures 5.8 and 5.9, and used an identical distribution of nodes in the radial direction to the

low-Re grid. Four different near-wall cell widths were tested, denoted by DX = 250, 300, 400, 500,

where the low-Re-grid near-wall cell width was DX ≈ 1 (i.e. the near-wall cell size used by the wall

functions was between 250 and 500 times larger than that used by the low-Re model). The quantity,

DX , represents the physical thickness of the wall-adjacent cell in the wall-normal direction. The

smallest width (DX = 250) corresponds to the lowest recommended size for wall functions based

on logarithmic velocity profiles, i.e. y+ ≥ 30, and the largest cell (DX = 500) had a maximum y+

of just over 300. The grid specification outside the near-wall cell was unchanged whilst the near-

wall cell width was varied. The grid spacing for DX = 250 was continuous and so for DX = 500

there was a jump in cell size of 2 : 1 from the near-wall cell to the adjoining cell (see the right-hand

picture in Figure 5.10). The discontinuity in cell size for the large near-wall cells was a consequence

of examining the effect of changing one variable only (the near-wall cell size) and not the effect of

refining the overall grid. However, steps in cell size can lead to numerical inaccuracies and slow
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convergence, particularly with more sophisticated turbulence models (such as the NLEVM tested

here). If a continuous grid spacing is used for the largest near-wall cell size, i.e. 1:1 instead of 2:1 grid

size ratios, the total number of grid nodes can be reduced from 45 to 41, convergence is improved and

results are almost identical using the UMIST-N wall function (see Figure 5.11).

5.3.4 Boundary Conditions

Figure 5.1 shows a schematic of the boundary conditions employed in the impinging jet flow.

Inlet Pipe Flow

The inlet conditions at the jet discharge were specified using a fully developed pipe flow with Reynolds

number, Re = 70,000 (based on bulk inlet velocity, jet diameter and the fluid properties of air at room

temperature, µ = 1.82×10−5kg/m/s and σ = 0.71). The pipe flow was calculated separately using a

parabolic solver (as in Suga [34]). In terms of coding the inlet conditions into TEAM; the velocities,

turbulence scalars (k, ε and µt ) and temperature were simply specified at the domain boundary nodes.

Axis of Symmetry

Along the axis of symmetry, zero-gradient conditions were applied for axial velocity components,

turbulence scalars and temperature. To implement zero-gradient conditions in the main-grid, the nodal

value on the boundary of the domain was set equal to the neighbouring nodal value (inside the domain)

and the flux term associated with the boundary was set to zero in the discretized transport equation

(i.e. aW = 0 for the symmetry axis on the west cell face, shown in Figure 5.1). Similarly, in the subgrid,

the values of V , k, ε̃ and T on the boundary were set equal to the neighbouring subgrid values. The

radial velocity at the boundary nodes situated on the axis of symmetry was set to zero.

Entrainment

For the entrainment boundary condition at the northern edge of the flow domain, shown in Figure 5.1,

different constraints were applied depending upon the local flow direction. If the fluid was entering the

domain, Dirichlet conditions were applied: k and ε were given small but finite values (k = V 2
N ×10−7,

where VN is the axial velocity through the entrainment boundary, and ε = k so that µt = cµk2/ε = 0.09),

the radial velocity was set to zero and the temperature of the flow entering the domain was set to the

ambient temperature. If fluid was leaving through the entrainment boundary, Neumann conditions

were applied: values of U , k, ε or T on the boundary were set equal to the neighbouring nodal values

just inside the domain and the flux coefficient through the boundary was set to zero (aN = 0).

Irrespective of whether the flow was into or out of the domain, the axial velocity on the boundary

of the domain, VN , was set equal to the neighbouring nodal value and the pressure at the node just

inside the entrainment boundary was set to zero.



100 CHAPTER 5. Impinging Jet Flow

Outlet

Although in theory the flow through the right-hand face of the domain shown in Figure 5.1 should be

leaving the domain, during the iteration process flow may enter or leave through the boundary. For this

reason the entrainment conditions described above were also used for the circumferential exit plane.

The only difference here was that the radial U -velocity specified on the boundary was determined

from:
∂(rU)

∂r
= 0 (5.3)

This condition was used to satisfy continuity within the cells adjacent to the exit plane.

Pipe Wall

It was necessary to include a short length of pipe at the jet inlet to improve stability. The surfaces of

the pipe wall were treated with TEAM wall functions and the nodes inside the pipe wall had properties

set to zero by the source conditions sU = 0 and sP = −1030. The wall function treatment of the inlet

pipe wall was not changed throughout the course of the calculations. Only the wall treatment applied

to the impingement wall was varied.

Impingement Wall

Either a low-Reynolds-number model approach was used for the impingement wall or wall functions

were applied. Heat transfer predictions were made assuming a constant heat flux from the wall surface.

In the Nusselt number comparisons shown later, results from the calculations are compared to the

experimental data of Baughn et al. [94]. In their experiments, Baughn et al. employed a transient

technique4 to obtain heat transfer measurements for constant wall temperature conditions. There is a

degree of uncertainty in measuring transient phenomena. Baughn et al. performed an analysis of this

and estimated the uncertainty to be less than 7%.

Figure 5.12 shows the predicted Nusselt number using constant heat flux (CHF) and constant wall

temperature (CWT) conditions. The two calculations used the non-linear k − ε model of Craft et

al. [67] and the “standard” Yap correction. Prediction of the Nusselt number at the stagnation point

was not affected by the choice of thermal boundary condition. However, the trough and peak in the

predicted Nu downstream of the stagnation point occurred slightly closer to the jet axis with the CWT

treatment than with CHF (CWT gave the min./max. inflexion points at r/D ≈ 1.05/1.65, respectively,

whereas CHF gave them at r/D ≈ 1.2/1.9). In the radial-wall-jet region r/D > 2.5, CWT also gave a

lower value of Nusselt number than CHF (a difference of up to 9%).

When using constant wall temperature conditions, there is greater heat transfer at the stagnation

point than with constant heat flux boundary conditions. The fluid in the boundary layer adjacent

4The impingement plate, which was coated with a layer of liquid crystals, was heated to a set temperature in an oven.
The plate was then covered with an insulating plate, taken out of the oven and placed in path of the impinging jet. Video
recording equipment was activated, the insulating plate was removed and the coloured fringes on the liquid crystals were
recorded.
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to the wall in the CWT case is therefore at a higher temperature. Consequently, downstream from

the impingement zone the temperature difference between the fluid and the wall is less and the heat

transfer coefficient is lower with CWT than with CHF boundary conditions.

5.4 Calculated Flow Results

5.4.1 Linear k− ε

Low-Reynolds-Number Model

The linear k− ε model is well known to overpredict the levels of turbulence energy, and hence heat

transfer, at a stagnation point (see, for example, Craft et al. [65]). Profiles of the RMS velocity (Figure

5.13) show that the normal stress at the stagnation point is significantly over-predicted by the low-Re

k − ε model: the predicted peak wall-parallel u
′
-velocity is nearly three times the measured value

whilst the wall-normal v
′
-velocity is approximately twice the size of the u

′
-component. The large

predicted stress anisotropy at the stagnation point falls as one moves radially outwards to r/D = 1

and for r/D ≥ 1.5 the u
′
- and v

′
-velocity components are practically identical. This behaviour in the

shear flow region of the impinging flow is as would be expected from an isotropic linear model (where

the normal stresses tend to u2
i = 2k/3 in the absence of any normal strain). Contrary to these predic-

tions, the experimental data of Cooper et al. [95] shows the Reynolds stress remaining anisotropic

at r/D ≥ 1.5 with the streamwise (wall-parallel) component exceeding the wall-normal component(
v
′ ≈ 2/3u

′
)

. Nusselt number predictions using the low-Reynolds-number k− ε model (solid line

in Figure 5.15) show that heat transfer at the stagnation point is overpredicted by more than 100%

even with the Yap correction. The secondary peak in Nusselt number, observed in the experiments of

Baughn et al. at r/D ≈ 2, is also entirely missed.

Standard Wall Functions

Resultant velocity profiles are shown for the four standard wall functions: TEAM, SCL, CL, and JL in

Figure 5.14. The four wall functions give practically identical results. Overall, the predicted velocity

is in fair agreement with the experimental measurements although the near-wall peak in the predicted

velocity is too low for (0.5 ≤ r/D ≤ 2.5) and the velocity profile is too steep for r/D ≥ 1.5. The

poor performance of the wall functions is partly because the experimental maximum velocity occurs

between the first nodal position and the wall. The near-wall cell size could not be reduced further

without causing problems downstream, where the near-wall node would no longer occupy the log-law

region and would fall inside the viscous sublayer5 . It is impossible to draw conclusions from the

velocity profiles about the relative performance of the different wall functions. This is true also of

the Reynolds stress profiles (not shown). However, the Nusselt number predictions obtained using

5Such problems could be overcome if one used a non-orthogonal grid in which the near-wall cell size increased with
distance from the axis of symmetry. This approach was not possible with the TEAM code, employed to study the impinging
jet flow, which could only use a Cartesian grid arrangement.



102 CHAPTER 5. Impinging Jet Flow

the four standard wall functions are markedly different (Figures 5.15 – 5.18). In general, all of the

standard wall functions are in poor agreement with the low-Re model predictions although they are

in somewhat better agreement with the experimental results. The TEAM, CL and JL wall functions

incorrectly predict the maximum heat transfer to occur at a distance of approximately r/D ≈ 0.5,

whilst the SCL wall function has a plateau between r/D = 0 and 0.5. All four wall functions predict

the correct shape of the Nusselt number profile in the shear flow region (r/D ≥ 2.5) although there

is significant discrepancy in the actual Nu levels in this region: the TEAM wall function results are

lower than the experimental data points, the SCL and JL wall functions are higher and the CL wall

function results are in good agreement with the experiments. None of the standard wall functions

predict the secondary peak in Nu at r/D = 2, although this is due more to the turbulence model

employed in the calculations. All of the standard wall functions show some sensitivity to the size of

the near-wall cell. This sensitivity is greatest with the TEAM wall function, where a doubling of the

cell size (from DX = 250 to 500) results in a drop in Nusselt number of approximately 10%. There are

a number of features of the TEAM treatment which may be responsible for this behaviour, such as the

assumed linear velocity profile used to calculate the strain-rate (∂U/∂y) in the expression for average

production (Equation 2.61) and the integration of Pk and ε across the whole near-wall cell (rather than

just to the edge of the viscous sublayer). The least sensitivity to the cell size is shown by the CL wall

function which calculates the wall shear stress using the value of k extrapolated to the edge of the

viscous sublayer. Overall, the SCL wall function shows the behaviour closest to the low-Re model

results of all the standard wall functions. Profiles of y+ (which changes along the length of the wall)

for the different near-wall sizes (DX = 250,300,400,500) are shown in Figure 5.19 using the CL wall

function.

UMIST-N Wall Function

In comparison to the standard wall function results, the UMIST-N wall function shows good agree-

ment with the low-Re model predictions of the Nusselt number (Figure 5.20). There is also practically

no variation in predicted Nu due to changes in the size of the near-wall main-grid control volume (pro-

files of y+ for the different near-wall cell sizes are shown in Figure 5.21). There is, however, a small

discrepancy between UMIST-N and low-Re Nusselt number near the stagnation point (r/D < 1). At

the stagnation point, the wall-normal velocity profiles across the subgrid are in good agreement with

the corresponding low-Reynolds-number model profiles (see the earlier discussion in Section 4.3.1,

in particular Figure 4.6). However, near-wall profiles of turbulent kinetic energy, k, (see Figure 5.22)

show that the main-grid k values are lower than the low-Re model results outside the wall-function

region. To investigate whether this discrepancy was due to an insufficient resolution of the peak in

kinetic energy, which occurs in the main-grid region, the number of main-grid nodes normal to the

wall was increased from 45 to 51, with clustering of nodes near the wall (Figure 5.23). This decreased

the y+ at the stagnation point from approximately 170 to 60 and improved the main-grid resolution

of the kinetic energy peak (Figure 5.24). This improved the agreement between the Nusselt number
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predicted by the UMIST-N wall function and the low-Re model (see Figure 5.25). This refinement

of the near-wall grid was not applied in other tests since downstream from the stagnation point y+

decreased to approximately 10, which is below the minimum value recommended in standard wall

functions. The minimum size of the near-wall control volume is not restricted with the UMIST-N wall

function since low-Reynolds-number model equations are solved in the main-grid and no assumed

profiles are used across the near-wall cell.

To confirm that the underpredicted Nusselt number shown in Figure 5.20 was a consequence of

inadequate main-grid resolution and not some effect introduced by decreasing the size of the subgrid

region, the same near-wall cell size was used as in previous cases, with cell sizes in the range DX =

250 → 500, but the adjoining main-grid cells were made 2.5 times smaller, see Figure 5.26. The

predicted k-profiles using this grid arrangement and a near-wall cell size of DX = 250, shown in Figure

5.27, display a marked improvement in capturing the low-Reynolds-number k-profile compared to the

earlier case where a coarse main-grid mesh was used. The UMIST-N wall function Nusselt number

(Figure 5.28) is in good agreement with the result obtained when the main-grid was refined and the

near-wall cell size was reduced to y+ ≈ 60 (compare to Figure 5.25). Although this test confirms

that the original underprediction of the UMIST-N Nusselt number shown in Figure 5.20 was caused

by insufficient near-wall main-grid resolution, this grid arrangement is not generally recommended,

since the discontinuity in main-grid cell sizes, shown in Figure 5.26, may lead to inaccuracies in

interpolating and determining gradients at the near-wall cell boundary6 and will increase convergence

times, particularly when more sophisticated turbulence models are applied. Interestingly, though, this

same approach of using a relatively fine grid up to the near-wall cell was advocated by Goncalves &

Houdeville [110] in their study of transonic flows over airfoils using wall functions. It also has some

similarities to the approach of Grotjans & Menter [47] where the edge of the grid is treated as the

outer limit of the viscous sublayer, rather than the wall, to enable unlimited grid refinement.

Log-Law Profiles

Profiles of the dimensionless velocity and temperature versus the wall distance, y+, on semi-logarithmic

axes are in Figures 5.29 and 5.30. The low-Re model distribution across the near-wall region is com-

pared to the UMIST-N and Chieng & Launder wall functions and the “universal” log-law at 8 radial

positions. The CL wall function line intercepts the universal log-law line, since the log-law is used

to prescribe the velocity and temperature at the near-wall node. It is immediately obvious from these

plots that the low-Re profiles do not match the law of the wall for velocity or temperature in the stag-

nation region (0 < r/D < 1). This helps to explain why profiles of the Nusselt number predicted by

the standard wall functions are so different from those obtained using low-Re model treatments in

the vicinity of the stagnation point. Further downstream, r/D > 1.5, the velocity log-law is in sur-

prisingly good agreement with the low-Re profile. However, the slope of the low-Re T + profile is

6since the gradient defined using central differencing between values at two nodes is more likely to reflect the gradient
midway between the two nodes than the gradient in close proximity to one of the nodes.
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steeper than the temperature log-law so that the temperature log-law is only valid for a narrow band

of 40 < y+ < 70.

The UMIST-N wall function profiles of U + and T + are in excellent agreement with the low-Re

profiles across the entire flow domain, despite the relatively coarse main-grid used in the wall function

calculations. In both velocity and temperature plots, the subgrid profile matches that of the low-Re

model almost exactly. Careful examination of the profiles shows that the subgrid profile does not

intersect with the line joining the two near-wall main-grid nodes. This is due to the graph axes being

logarithmic whilst a linear interpolation is used for the subgrid velocity and temperature boundary

conditions.

Yap Correction

Figure 5.31 compares the performance of the standard and differential Yap corrections (given by Equa-

tions 2.16 and 2.17) with the low-Re linear k− ε model. Clearly, either the standard or the differential

correction improves significantly upon the heat transfer predictions of the linear k− ε model without

any length-scale correction. The Nusselt number predictions are notably lower overall and closer to

the experimental values with the differential Yap correction than with the standard Yap correction.

Figure 5.32 shows that the Yap correction has a much smaller influence on the heat transfer predic-

tions when a standard wall function approach is employed than when a low-Re model is used. This

behaviour is to be expected since standard wall functions fix the turbulence length scale at the near-

wall node by specifying εP (Equation 2.51) and therefore in effect the Yap correction is not used in

the near-wall row of cells7. The performance of the UMIST-N wall function with the differential Yap

correction (Figure 5.33) shows a similar level of agreement with the low-Re model to that previously

discussed for the standard Yap correction.

5.4.2 NLEVM

Low-Reynolds-Number Model

The impinging jet was one of the flows considered by Suga [34] in developing the non-linear k− ε
model8 and more recent calculations by Craft et al. [67] have confirmed that the model performs

well in this flow. Contour plots of the turbulent kinetic energy (Figure 5.34) show that the NLEVM

predicts lower values of k at the stagnation point than the linear k− ε model. Profiles of the RMS

axial and radial velocity components in Figure 5.35 also show that the overall level of the predicted

normal stress in the vicinity of the stagnation point is much lower and in far better agreement with

the experimental measurements than that observed with the linear model (compare to Figure 5.13).

At r/D = 0.5, the non-linear model correctly predicts the axial stress to be slightly larger than the

7The influence of the Yap correction on the predicted Nusselt number when standard wall functions are used is conse-
quently dependent upon the thickness of the wall function region, i.e. the near-wall grid arrangement.

8Suga calibrated the model with respect to axisymmetric impinging jet flows with jet heights of H/D = 2 and 6, whereas
the present study examines a jet height of H/D = 4.
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radial stress and also the reverse trend at greater radii. However, the degree of anisotropy is slightly

overpredicted for 1.0 ≤ r/D ≤ 1.5 and underpredicted for r/D ≥ 2. Craft et al. [30] acknowledged

that the NLEVM underpredicts the stress anisotropy in plane channel flows but suggested that the

correct normal stress behaviour is not a serious problem since it is the shear stress which controls the

mean-flow behaviour in such flows, and this is well predicted. Figure 5.36 shows profiles of the shear

stress for the impinging jet flow, and these are for the most part predicted accurately, although there is

a significant overprediction of the shear stress magnitude at r/D = 2.

Nusselt number results for the low-Re NLEVM are shown as the solid line in Figure 5.37. The

non-linear model predictions are in far better agreement with the experimental measurements than the

linear model results shown, for example, in Figure 5.15. The overall shape of the experimental Nu

profile is well matched with the secondary peak appearing at the correct location (r/D = 2). However,

the level of the predicted Nu is consistently around 10% higher than the experimental value.

Standard Wall Functions

Nusselt number predictions using the four standard wall functions are presented in Figures 5.37 to

5.40. All of the standard wall functions incorrectly predict the maximum heat transfer to occur down-

stream from the stagnation point, in the range 1 < r/D < 2, with the TEAM wall function underpre-

dicting the stagnation-point Nusselt number by 50%. All of the standard wall functions also display

some sensitivity to the size of the near-wall control volume. Of the four standard wall functions, the

Chieng & Launder wall function predicts the best overall shape of the Nusselt number.

Figure 5.42 shows the effect on the predicted Nusselt number of neglecting the normal stress con-

tribution to the cell-averaged production Pk in the Chieng & Launder wall function (see discussion

in Section 2.4). The stagnation point heat transfer is reduced by 30% compared to the case where

normal stress contributions are included and agreement with the experimental data is considerably

poorer. Figure 5.43 shows results using the Chieng & Launder wall function which has been modi-

fied to calculate the cell-averaged production, Pk, assuming a linear profile of both shear and normal

stresses across the fully-turbulent region of the near-wall cell (in the CL wall function results previ-

ously shown in Figure 5.39, the shear stress is assumed to vary linearly and the normal stresses to

remain constant). The differences between Figures 5.39 and 5.43 are slight. In a further modifica-

tion to the CL wall function, discussed in Section 2.4.6, the cell-averaged production is calculated

assuming that the Reynolds stresses vary according to their wall-limiting behaviour across the viscous

sublayer. This modification introduces a greater sensitivity to the size of the near-wall control volume

(Figure 5.44), indicating that the assumed sublayer profiles of the Reynolds stresses are inappropriate.

When using standard wall functions, the strain-rate at the near-wall node (∂U/∂y)P can be cal-

culated by differentiating the log-law, as discussed in Section 2.4.7. This strain-rate is used by the

NLEVM to find the value of the strain-dependent cµ function and the non-linear stress components

within the near-wall cell. In fact, since the wall function replaces the production term in the near-

wall cell with a cell-averaged value, Pk, and since the diffusion to the wall is replaced by the wall
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shear stress, τwall , the use of a modified ∂U/∂y only significantly influences diffusion of momentum

through the face of the cell opposite the wall (the north face in Figure 2.1). Figure 5.45 shows the

Nusselt number predictions for the impinging jet using the Chieng & Launder wall function with the

log-law definition of ∂U/∂y. The use of what could be considered as a more accurate representation

of the strain-rate in fact leads to a worsening of the predicted Nusselt number, the log-law ∂U/∂y

predicting entirely the wrong shape of the Nu profile near the stagnation point.

UMIST-N Wall Function

In contrast to the standard wall functions, the UMIST-N wall function with the NLEVM (Figure 5.46)

shows excellent agreement with the low-Re model predictions. The wall function and low-Re results

are practically indistinguishable for r/D < 1.5 and r/D > 3, with a maximum discrepancy of 8% at

r/D = 2. The UMIST-N results also show negligible sensitivity to changes in the size of the near-wall

control volume, whilst the Chieng & Launder wall function showed differences of up to 14% with the

NLEVM.

Figure 5.47 shows a similar plot of the Nusselt number predicted by the UMIST-N wall function

versus the low-Re NLEVM model predictions but now using the original cµ function proposed by

Craft et al. (Equation 2.33) – the previous results in Figure 5.46 were with the more recent cµ function

of Craft et al. [67] (Equation 2.36). The differences between the two cµ functions are relatively minor.

Using Equation (2.33) reduces the secondary peak in the Nu profile by approximately 5% bringing

the predicted profile marginally closer to the experimental data. The UMIST-N wall function behaves

similarly with either cµ function.

Log-Law Profiles

Figures 5.48 and 5.49 compare the UMIST-N and Chieng & Launder wall function predictions of

the velocity and temperature with the low-Re model predictions and “universal” law of the wall.

The dimensionless velocity and temperature predicted by the low-Re model in the vicinity of the

stagnation point are much lower than those predicted by the universal log-law. The Chieng & Launder

wall function is tied to the log-law and consequently is in poor agreement with the low-Re profiles,

whereas the UMIST-N wall function shows good agreement with the low-Re profiles across the whole

flow domain. The slope of both the low-Re velocity and temperature profiles in the fully-turbulent

region is somewhat steeper than that predicted by the log-law, even at r/D = 3.5, suggesting that

agreement between log-law based wall functions and low-Re model calculations is only possible for

a narrow range of near-wall cell sizes.

Yap Correction

Figure 5.50 compares the predicted Nusselt number using the low-Re NLEVM without the Yap cor-

rection, with the standard Yap correction (Equation 2.16) and with the differential Yap correction
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(Equation 2.17). The purpose of the Yap correction is to suppress turbulence near a stagnation point.

It seems therefore remarkable that when the Yap correction is removed, the Nusselt number is reduced.

This behaviour is contrary to that observed previously with the linear k− ε model (Figure 5.31).

The causes of this behaviour can be understood by examining the NLEVM expression for the

Reynolds stress (Equation 2.27). Along the axis of symmetry, the vorticity tensor, Ω i j, is zero and the

expression for the Reynolds stress simplifies to:

uiu j −
2
3

δi jk = −νt Si j︸ ︷︷ ︸
linear

−0.1νt
k
ε̃

(
SikSk j −

1
3

SklSklδi j

)
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quadratic

−5c2
µνt

(
k
ε̃

)2

Si jSklSkl

︸ ︷︷ ︸
cubic

(5.4)

Assuming the ratio of (k/ε̃) to be large near the stagnation point, the cµ function given by Equation

(2.36) is approximately proportional to the ratio of (ε̃/k):

cµ ∝
ε̃
k

(5.5)

If one also assumes that the strain-rates are approximately equal whether the Yap correction is em-

ployed or not, then the cubic non-linear term in Equation (5.4) can be shown to vary in proportion to

the eddy-viscosity. The quadratic term, on the other hand, is a function of the eddy-viscosity and the

ratio of (k/ε̃). When the Yap correction is introduced, the turbulent length scale and hence the ratio of

(k/ε̃) are decreased. This then decreases the quadratic term in Equation (5.4) which has the effect of

increasing the wall-normal Reynolds stress, v2, and hence the production of k. It was found, although

results are not shown here, that by making the quadratic coefficient c1 in the NLEVM a linear func-

tion of cµ, the dependence on (k/ε̃) is reduced and the NLEVM responds as anticipated to the Yap

correction, i.e. heat transfer rates are reduced when the Yap correction is activated.

The difference between the standard and differential Yap correction results are less significant

with the NLEVM than those shown previously for the linear model. The differential correction re-

duces the Nusselt number at the stagnation-point (by around 8% compared to the standard correction)

and further downstream (r/D > 1). Results are therefore in marginally better agreement with the

experimental data using the differential length-scale correction.
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5.5 Computational Costs

Tables 5.4 and 5.5 compare the computing times for the Chieng & Launder wall function, the UMIST-

N wall function, and low-Reynolds-number treatments for the linear and non-linear k−ε models. Both

wall functions use identical main-grids and the low-Reynolds-number grids only involve refinement

normal to the wall (the grid in the radial direction is identical in wall function and low-Re model

simulations). Main-grid under-relaxation factors are identical for all computations and subgrid under-

relaxation factors are those presented in Table 5.2. Calculations were performed on a Silicon Graphics

O2 with the same levels of compiler optimization in each case.

Model Tested No. of Nodes Time No. of Total Relative

(axial×radial) per Iter (s) Iterations CPU Time (s) CPU Time

Chieng & Launder WF 45×70 0.147 1523 224 1

UMIST-N WF (45+[40])×70 0.228 1392 318 1.42

Low-Re 90×70 0.270 9698 2616 11.68

Table 5.4: Computing times for the impinging jet flow using the linear k− ε model

Model Tested No. of Nodes Time No. of Total Relative

(axial×radial) per Iter (s) Iterations CPU Time (s) CPU Time

Chieng & Launder WF 45×70 0.158 1426 226 1

UMIST-N WF, option 1 (45+[40])×70 0.224 1392 313 1.38

UMIST-N WF, option 2 (45+[40])×70 0.260 1380 359 1.59

UMIST-N WF, option 3 (41+[45])×70 0.253 1568 398 1.76

Low-Re, option 1 90×70 0.318 9346 2971 13.14

Low-Re, option 2 90×70 0.324 9116 2955 13.08

Table 5.5: Computing times for the impinging jet flow using the non-linear k− ε model

All the calculations reported in Table 5.4 employed the “standard” Yap correction. The Chieng &

Launder wall function results given in Table 5.5 employed the Craft et al. [30] model and “standard”

Yap correction. The following options are shown for the subgrid wall function:

1. Craft et al. [67] model with “standard” Yap correction and small near-wall cell size (DX = 250)

2. Craft et al. [67] model with differential Yap correction and small near-wall cell size (DX = 250)

3. Craft et al. [67] model with differential Yap correction and large near-wall cell size (DX = 500)

The large near-wall cell (DX = 500) corresponds to a doubling in the size of the smaller (DX = 250)

near-wall cell. The two cell sizes represent the extremes of recommended near-wall cell sizes for

log-law based wall functions: for the small (DX = 250) cell the minimum y+ was around 30 and in

the large (DX = 500) cell the maximum y+ was around 300. Two options are shown for the low-

Reynolds-number calculations as follows:
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1. Craft et al. [30] model with “standard” Yap correction

2. Craft et al. [67] model with differential Yap correction

5.6 Discussion & Conclusions

The principal aim of examining the impinging jet flow was to assess whether the UMIST-N wall func-

tion could obtain good agreement with low-Reynolds-number model predictions in a flow far from

local equilibrium. Using both linear and non-linear models it has been shown that UMIST-N does in-

deed produce very nearly the same results as with the corresponding low-Re model. When used with

the linear k− ε model, the UMIST-N wall function slightly underpredicts the low-Re model Nusselt

number results near the stagnation point. This was shown to be mainly due to insufficient resolution

of the peak turbulent kinetic energy in the main-grid. Refinement of the main-grid improved reso-

lution of this peak and consequently improved the Nusselt number prediction, whilst demonstrating

that the UMIST-N wall-function can be applied in regions where y+ falls to approximately 10 (be-

low that recommended for standard wall functions based on a log-law velocity profile). When used

with the non-linear k− ε model, there was excellent agreement between the UMIST-N wall function

and low-Re model predictions. Tests with four log-law-based wall functions showed that their perfor-

mance is poor near the stagnation point. Semi-logarithmic profiles of the dimensionless velocity and

temperature (U+ and T + versus y+) indicated that the flow predicted by the low-Re NLEVM in the

vicinity of the stagnation point does not follow the law-of-the-wall. The fact that the low-Re NLEVM

shows good agreement with the experimental Reynolds stress and heat transfer results therefore in-

dicates that wall functions which are based upon the log-law will be unlikely to predict impinging

flows with accuracy. Standard log-law wall functions were also shown to be sensitive to the size of the

near-wall control volume whereas the UMIST-N wall function showed practically no sensitivity. The

new wall function leads to a modest increase in computing time of up to 60% compared to a standard

wall function. This is, however, an order-of-magnitude less than a standard low-Reynolds-number

treatment.

In addition to examining the performance of the new wall function, two different turbulence

length-scale corrections were tested: the Yap correction [64], and the differential Yap correction of

Craft et al. [67]. The latter correction removes the dependence upon the wall-normal distance, which

can be difficult to define in flows with complex geometry. The differential Yap correction was shown

to have a stronger influence on the turbulence length scale than the standard Yap correction and, with

a linear k− ε model, decreased the predicted Nusselt number at the stagnation point by nearly 25%.

Its effect with the non-linear model was shown to be less significant.



Chapter 6

Spinning “Free” Disc Flow

6.1 Introduction

There have been numerous studies of the flow induced by a spinning disc in an infinite quiescent

environment, or free-disc flow. The case represents one of the simplest wall-bounded flows involving

strong rotational forces. By far the greatest interest in spinning discs comes from simulations of flow

through gas turbines, where it is common practice to first validate a CFD code with the free-disc

flow, before moving on to study more complex enclosed disc flows which occur inside the turbine.

Other practical examples of spinning-disc flows include computer hard disks and wheels on moving

vehicles. Experimental studies have shown that approximately one third of the total drag on a typical

saloon car is due to the interaction between the flow around the spinning wheels and their associated

structures [111], so clearly one would like to predict accurately the flow around the spinning wheel.

In a free-disc flow, the disc of radius rb rotates with angular velocity Ω and, due to the no-slip

condition on the surface of the spinning disc, a tangential velocity (W = Ωr) is imparted to the fluid

in contact with the disc. A radial outflow of fluid from the centre of the disc is also induced due

to the centrifugal force. The entrainment of fluid axially into the boundary layer and the exit of the

fluid radially is referred to as the “free-disc entrainment rate” or “free-disc pumping effect” [112].

When the disc is spinning sufficiently fast, the boundary layer can become turbulent. The location of

transition from laminar to turbulent flow depends upon the local rotational Reynolds number (based

on the tangential velocity of the disc and the radius from the disc axis), the surface roughness of

the disc and external disturbances to the fluid flow. Experimental studies of the free-disc flow have

reported a certain degree of variation in the location of this transition. Gregory et al. [113], reported

that the transition started at a rotational Reynolds number of approximately 185,000 which led to

fully-developed turbulence at Reφ = 285,000, whilst Theodorsen & Regier [114] found that transition

started at around Reφ = 310,000 for a highly polished disc and Reφ = 220,000 for a rough disc. Owen

et al. [115] even found no sign of transition at all, which was attributed to a 2 degree taper on the disc

faces and the presence of a central driving shaft. Once the boundary layer has become fully turbulent,

the tangential velocity exhibits a logarithmic velocity profile near the wall whilst the radial velocity

110
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increases from zero at the wall to a peak and then decays with distance from the disc [116].

Mayle [117] describes three modes in which transition occurs from laminar to turbulent flow: nat-

ural, bypass and separated-flow transition. In free-disc flows, transition occurs in the “natural” mode,

in which a weak instability in the laminar boundary layer leads to the formation of two-dimensional

Tollmien-Schlichting waves which are amplified to form hairpin vortices and turbulent spots that grow

and are convected downstream until eventually they coalesce to form a fully-turbulent boundary layer.

Schlichting [118] noted that the transition mechanism in the free-disc boundary layer is slightly dif-

ferent to that exhibited by classical 2-D flat-plate flows. In particular, stationary spiral vortices are

formed on the free-disc which show some similarity to Taylor-Görtler vortices [119]. In “bypass”

transition, a relatively high free-stream turbulence level diffuses turbulent kinetic energy into the lam-

inar boundary layer. Turbulent spots can appear directly without the preceding stages of T-S waves

found in natural transition. In gas turbines, transition on the surface of turbine discs occurs primarily

in the bypass mode, while the flow of air over the car wheel is arguably fully turbulent. Although the

free-disc flow serves as a useful test-case for validating turbulence models and near-wall treatments

for eventual application to gas-turbine flows, or flows around moving vehicle wheels, the mechanism

of transition in these cases is different. Therefore, the prediction of transition in the free-disc flow

should in many respects be looked at as a separate issue to that of transition prediction in gas turbines

or car wheels.

Although the flow is geometrically simple, there are several challenges for the numerical simula-

tion of turbulent free-disc flows using Reynolds-averaged Navier-Stokes equations. Firstly, as already

indicated, the flow involves transition from laminar to turbulent flow. This is notoriously difficult to

locate accurately and repeatably, and is highly sensitive to the turbulence model, the numerical scheme

and the initial turbulence levels [120]. Secondly, the large near-wall cells commonly used with high-

Reynolds-number models and wall functions cover the region of the flow where there is a peak in

the radial velocity profile. Capturing this type of velocity variation presents an impossible problem

for wall functions based on the log-law velocity profile. Moreover, it is usually recommended that,

if a wall-function approach is adopted, the near-wall node should be located at a dimensionless wall

distance, y+ = yUτ/ν, between 30 and 100 [121]. Since the friction velocity, Uτ, increases with radial

distance one may be forced to adopt a non-orthogonal grid to maintain the y+ value at the near-wall

node between these limits. In addition, wall functions are typically developed with reference to sim-

ple channel flows in which there is only one Reynolds shear stress, uv. In the spinning-disc flow, one

needs to also account for the uw and vw shear stresses.

Whilst the free-disc flow is a challenging computational test-case, in terms of predicting transition

from laminar to turbulent flow and applying a wall treatment that can capture the near-wall skewing

of the velocity profile, quite acceptable results can be achieved using a fairly simple mixing-length

turbulence model and a parabolic solver (e.g. Owen et al. [115]). Moreover, this method would be

considerably faster than the linear and non-linear two-equation models and the elliptic solver used

in the present study. However, one would clearly like to have a generally applicable computational



112 CHAPTER 6. Spinning “Free” Disc Flow

method that can be applied to a wide variety of flows without the need for significant re-optimization.

Whilst a mixing-length turbulence model with a parabolic solver may be adequate for the free-disc

flow it would be inappropriate for the study of flow around a car body, for example, or even the

impinging jet flow considered in Chapter 5.

6.2 Previous Experimental and Computational Studies

There have been numerous computational studies of the turbulent spinning free-disc flow. Owen &

Wilson [112] reviewed a number of solutions of the momentum-integral boundary-layer equations

using assumed velocity profiles and empirical correlations. Accurate heat transfer predictions of the

free-disc have been made using parabolic finite-difference solvers with both mixing-length and two-

equation turbulence models (e.g. Owen et al. [115] and Launder & Sharma [13], respectively). How-

ever, there have been relatively few studies of free-disc flows using high-Re turbulence models with

wall functions. Chew [122] used the elliptic TEACH code with the high-Re k− ε model previously

used by Gosman et al. [123] and studied the flow between co-rotating discs, a rotor-stator cavity and

the free-disc. The predicted tangential wall shear stress in the free-disc flow was in poor agreement

with both experiment and previous integral-momentum solutions. Predictions of the flow between

rotating and stationary discs also showed relatively poor agreement with both the experimental ra-

dial velocity distribution and the earlier work of Gosman et al., which had shown more encouraging

results. It was suggested that the differences with the previous numerical study were due to an insuf-

ficient grid density being used by Gosman et al., which was shown to have a significant effect on the

moment coefficient. In the third flow considered by Chew, that between co-rotating discs, it was found

that the low-Re model of Launder & Sharma tended to laminarize much of the cavity which experi-

mentally had been turbulent. This final result was confirmed by Morse [124] in a subsequent study of

turbulent flow in rotating cavities. Williams et al. [125] studied enclosed spinning-disc flows using a

high-Re k− ε model with simple wall functions and the Lam & Bremhorst low-Re k− ε model. The

wall-function model outperformed the low-Re model in predicting both tangential and radial velocity

profiles and the authors concluded that the wall-function approach was to be preferred since it was far

more economical in computing time. Virr et al. [121] also studied the flow in rotating cavities using

the Launder & Spalding k− ε model with both wall functions and a two-layer near-wall one-equation

model. They reported that the wall function returned acceptable results provided that the boundary

layer was fully turbulent and that the y+ was maintained between 30 and 100. A comprehensive com-

parison of different turbulence models and near-wall treatments for rotating flows was given by Owen

& Wilson [112]. They concluded that “at present only low-Reynolds-number k− ε models have been

shown to give good predictions of both flow and heat transfer over the complete range of test cases”.

A number of studies have alluded to convergence difficulties with the free-disc flow. Chew [122]

found that, using a high-Re model with wall functions, axial grid-refinement led to instability prob-

lems. This may have been due to more of the near-wall cells occupying the viscous sublayer region in
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which case the wall functions resorted to laminar-type boundary conditions. Chew also encountered

problems with the low-Re Launder & Sharma model where there was a tendency for the boundary

layer to laminarize. In the original calculations by Launder & Sharma [13], transition was triggered

by an injection of turbulence energy at a specified radial location. Morse [126] and Ong [127] also

reported difficulties in predicting the onset of transition with low-Re k− ε models. To achieve transi-

tion, Morse resorted to modifying the eddy-viscosity in the turbulent kinetic energy production term

with a proportion of the eddy-viscosity calculated by a mixing-length model. Ong used the Launder &

Sharma model with a parabolic semi-implicit Keller-box method and found that if the calculation was

started in the laminar boundary-layer region of the free-disc, the solution would remain laminar and

never undergo transition to turbulence. To obtain results for the turbulent boundary layer, Ong started

the calculation at a radial position corresponding to Reφ = 600,000, although it was reported that even

starting from what should be a fully-developed turbulent region, the boundary layer thickness showed

a tendency to decay and laminarize. In contrast to these earlier calculations, Kiliç [128] did not report

any difficulties in predicting transition with the same turbulence models using a two-dimensional, el-

liptic, multigrid solver. Kiliç found that transition occurred naturally at Reφ ≈ 150,000. In the present

study, the flow field was initialized with a uniform turbulence level and, as the calculation progressed,

turbulence decayed near the axis of the disc to form a laminar boundary layer whilst at a greater radial

distance the flow remained fully turbulent. No attempts were made to artificially induce transition and

it was found that transition occurred naturally at approximately the same location as Kiliç found (see

later discussion).

6.3 Computational Details

6.3.1 Models Used

Two low-Reynolds-number models were tested in the free-disc flow: the Launder & Sharma k − ε
model [13] and the non-linear k− ε model of Craft et al. [30, 67]. Results obtained using the low-Re

models were compared to those obtained using three “standard” wall functions: Launder & Spalding

(TEAM), simplified Chieng & Launder (SCL) and Chieng & Launder (CL) and the new wall function,

UMIST-N. The standard wall functions all employed a logarithmic profile for both the radial and

tangential velocity if the near-wall node was at a dimensionless wall distance of y+ ≥ 11.6. If the

near-wall node was within the viscous sublayer (y+ < 11.6) a linear profile was adopted (for details

see Chapter 2). The same turbulence model was applied across the subgrid domain of the UMIST-N

wall function as across the main-grid domain.

6.3.2 Numerical Methods

The free-disc flow was examined using the TEAM code, described in Section 3.2. Diffusion terms

appearing in the transport equations were approximated using central differencing. Convective terms
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in the momentum and temperature equations adopted the third-order QUICK scheme whilst the power-

law differencing scheme, PLDS, was used for turbulence parameters. It was found that the unbounded

QUICK scheme led to instability in the initial stages of the calculations and therefore PLDS was used

for all quantities in the first 500 or so iterations (approximately 10−25% of the full calculation length

of the wall-function calculations). In addition, with the wall-function calculations, PLDS was always

used for the wall-adjacent cells. The quadratic interpolation used by QUICK employs two upstream

nodes which, if the flow was directed away from the wall, would involve the node on the wall and

the wall adjacent node. Since there are abrupt changes in the velocity within the large near-wall

cell used with a wall-function approach, the use of these two nodal values could produce unrealistic

interpolated velocity profiles which was found to lead to numerical instability (particularly with large

near-wall cells). The use of PLDS within the near-wall cells was not considered to be too restrictive

on numerical accuracy since one would expect the near-wall flow to be parallel to the wall, in which

case PLDS and QUICK would give similar results.

Residuals were summed across all the nodes in the flow domain and non-dimensionalized with a

characteristic value for the particular variable. For the momentum equations this was the momentum

flux defined using the velocity at the edge of the disc (Ωrb). The turbulent kinetic energy residual

was non-dimensionalized with the flux defined using the velocity scale (Ωrb)
2, whilst the dissipation

rate, ε, was non-dimensionalized using the kinetic energy flux and an assumed length scale l = rb. A

mass imbalance was calculated rather than a pressure residual which was also non-dimensionalized

using (Ωrb). Unlike previous studies [124, 128] the factors used to non-dimensionalize the residuals

were not linked to the mass flow rate since this varied considerably during the calculation. As a

consequence, during a calculation from an initially quiescent flow-field, residuals increased and then

decayed. The calculation was stopped when momentum and turbulent kinetic energy residuals fell

below 10−7. All the residuals decreased by at least 3 orders of magnitude from their maximum values.

It was verified that using more stringent convergence criteria had no effect on results.

Under-relaxation factors were set at a relatively low level for all the calculations performed in the

present work, as shown in Table 6.1. Subgrid under-relaxation factors used for the free-disc flow are

given in Table 6.2. Previous tests with the UMIST-N wall function in the impinging jet found that

the under-relaxation of the subgrid turbulence parameters needed to be increased as the size of the

near-wall main-grid cell (and hence the number of subgrid nodes) was increased. In the present work,

the under-relaxation factors given in Table 6.2 were used throughout.

U V W P k ε T NL

0.2 0.2 0.2 0.3 0.1 0.1 0.4 0.5

Table 6.1: Under-relaxation factors used for the free-disc flow with low-Reynolds-number models,
standard wall-function calculations and in the main-grid with UMIST-N wall function calculations
(NL refers to the Non-Linear EVM terms).
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U W k ε̃ T NL

1.0 1.0 0.9 0.9 1.0 1.0

Table 6.2: Subgrid under-relaxation factors for the free-disc flow used with the linear and non-linear
k− ε models

6.3.3 Domain and Grid

Figure 6.1 shows the domain size and boundary conditions used for the free-disc study. Following

Kiliç [128], a domain height of 0.06D was used which corresponds to three times the boundary layer

thickness at the outside edge of the disc, where Reφ = 3.3× 106, as determined from von Kármán’s

correlation for turbulent flow over a free-disc [129].

Axis of
symmetry

%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%'%&%'%
wall

entrainment boundary

outflow

0.5D

0.06D

Figure 6.1: Free-disc boundary conditions

A number of previous spinning-disc studies have noted that the placement of grid nodes near the

wall is important in obtaining reliable wall shear stress and moment coefficient predictions [112, 128].

Using the same domain size and Reynolds number, Kiliç [128], previously used a low-Re grid of 67×
67 nodes and checked grid-dependence using a 91×115 (axial × radial) grid. In the present study, in

order to ensure that adequately grid-independent low-Re results were obtained, grid refinement was

studied separately in the radial and axial directions.

Radial Grid-Refinement

Three different grid densities were tested in the radial direction with 90, 120 and 150 nodes, using

70 nodes in the axial direction (see Figures 6.2, 6.3 and 6.4). Figure 6.5 shows the predicted Nusselt

number from these three grid arrangements. The location of transition shifts slightly downstream as

one moves to the higher grid density, with approximately the same difference from the 90× 70 to

the 120× 70 grid as from the 120× 70 to the 150× 70 grid. Clearly the logarithmic plot magnifies

the differences in the transition region and, as shown by Figure 6.6, the shift in the transition location

achieved by increasing the number of radial nodes by 30% is equivalent to the distance between two or
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perhaps three nodes. Following this study, 120 nodes were used in the radial direction for all low-Re

and wall-function calculations.

Axial Grid-Refinement

Axial refinement of the low-Re grid was achieved by increasing the number of nodes from 70 to

120, using 120 nodes in the radial direction in both cases (Figures 6.3 and 6.7). Predicted Nusselt

number using the low-Re Launder & Sharma k − ε model are shown in Figures 6.8a and 6.8b, on

semi-logarithmic and linear axes respectively. Corresponding y+ values for the near-wall node and

for the first 10 near-wall nodes are shown in Figures 6.9a and 6.9b. In order to obtain y+ < 0.8 for

the 120× 70 grid, an expansion ratio of 1.15 was required for the near-wall cells. The 70 percent

increase in the number of nodes in the axial direction shows negligible difference in the predicted

Nusselt number on semi-log axes (Figure 6.8a), although closer inspection of the Nusselt number

distribution on linear axes (Figure 6.8b) shows a maximum difference of just under 2% which occurred

at the outside edge of the disc. The use of 70 nodes in the axial direction was therefore considered

adequately grid-independent1 .

Four high-Reynolds-number grids were used in the present study to assess the sensitivity of the

standard and UMIST-N wall functions to changes in the width of the near-wall cell, over which the

wall function was applied. In order to avoid sudden increases in cell sizes from the near-wall cell to the

adjoining cell, the number of nodes in the axial direction was varied from 22 to 30 (shown in Figures

6.10 to 6.13). With 22 axial cells there was no clustering of cells (i.e. the axial width of the grid cells

was constant across the whole flow domain) whilst, with a larger number of radial nodes, there was a

small degree of clustering towards the wall. The wall-adjacent cells in the low-Re calculations had an

average aspect ratio of approximately 2900 : 1 whilst the wall-function grid with 28 axial cells cells

had an aspect ratio of approximately 5 : 1.

The number of subgrid cells used within the wall-adjacent main-grid cell was adjusted for each

high-Re mesh to ensure that grid-independent results were obtained. Figure 6.14 shows the predicted

Nusselt number using the 28× 120 high-Re mesh with between 30 and 50 subgrid nodes. The ex-

pansion ratio used to generate the subgrid mesh was also modified in each case to maintain the size

of the wall-adjacent subgrid cell such that y+ < 1 (expansion ratios are shown in parentheses in the

key of Figure 6.14). Figure 6.14 shows that there was negligible difference in the predicted Nusselt

number due to an increase the number of subgrid nodes from 30 to 50. The total number of subgrid

plus main-grid nodes (i.e. 30×120 subgrid and 28×120 main-grid nodes) was thus slightly less than

that required by low-Reynolds-number models (70×120 nodes).

1Interestingly, the physical width of the wall-adjacent cell with the 70×120 grid is 1.6×10−6D, where D is the diameter
of the disc (the node within this cell has a maximum y+ = 0.64 at the edge of the disc). Using the same rotational speed and
viscosity as Cobb & Saunder’s experiments [130] (which had an 18-inch disc for a Reynolds number of up to 0.8× 106),
the width of the near-wall cell in the current tests corresponds to 1.5×10−6metres. By comparison, the minimum value of

the Kolmogorov microscale η =
(
ν3/ε

)1/4
, based on the value of ε at the near-wall node at a rotational Reynolds number,

Reφ = 3×106 , was of the order η = O
(
10−4

)
metres.
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6.3.4 Boundary Conditions

A schematic of the boundary conditions for the free-disc flow is shown in Figure 6.1.

Axis of Symmetry

The radial (U) and tangential (W ) velocity were set to zero on the boundary nodes (in both the main

grid and the subgrid) and zero gradient conditions were applied for the wall-normal (axial) velocity,

V , turbulent kinetic energy, k, dissipation rate, ε, and temperature, T .

Entrainment Boundary

For the entrainment boundary condition at the northern edge of the flow domain, shown in Figure 6.1,

different constraints were applied depending upon the local flow direction. If the flow was entering

the domain, k and ε were given small but finite values2 , the radial and tangential velocity were set

to zero and the temperature of the flow entering the domain was set to the “ambient” temperature

(defined as Tamb = 0 in the present work). If fluid was leaving through the entrainment boundary then

zero-gradient conditions were applied for U , W , k, ε and T . Irrespective of the flow direction, the

pressure at the node just inside the entrainment boundary was set to zero and the axial velocity on the

boundary of the domain, VN , was set equal to the neighbouring nodal value.

Circumferential Exit Plane

Although in theory the flow through the east face of the domain should be leaving the domain, during

the iteration process flow may enter or leave through the boundary. For this reason the entrainment

conditions described above were also used for the circumferential exit plane. The only difference here

was that the radial velocity specified on the boundary was determined from:

∂(rU)

∂r
= 0 (6.1)

This condition is used so that continuity is satisfied within the cells adjacent to the exit plane.

6.3.5 Initial Turbulence Levels

In order to obtain turbulent flow predictions for the spinning free-disc in a quiescent atmosphere, in

which the ambient turbulence levels are practically zero, one must start the calculation from an initially

turbulent flow field. If the flow field is initialized with zero turbulence levels then, since turbulence

energy does not enter the flow domain through the boundaries of the domain, the flow will remain

laminar no matter how high the rotational Reynolds number. Clearly one would like to obtain results

that are independent of the chosen initial turbulence levels i.e. one should not obtain a multitude of

2Incoming flow turbulence levels were k = 0.01V 2
N and ε = ρcµ (k∗)2 /(0.01µ) , where VN is the axial velocity through

the boundary.
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fully-converged solutions depending upon the point from which the calculation was started. However,

in the present study it was found that the location of the transition from laminar to turbulent flow over

the free-disc (or its disappearance altogether) can indeed be affected by the initial turbulence field

used in the numerical simulation unless certain precautions are taken. Using these simple precautions,

the same location of transition can be calculated, independent of the turbulence initialization.

Morse [126], studied the flow over a spinning disc using two low-Reynolds-number k− ε models

with a parabolic solver and found that an ad hoc artificial turbulence viscosity input was required to

prevent laminarization of the boundary layer. Morse commented that this was necessary since “it is

difficult to effect the transition to turbulent flow with the computation started from reasonable levels

of turbulent kinetic energy”. Owen & Wilson [112] also mention briefly that the performance of the

Morse model and the Launder & Sharma model is sensitive to the initial turbulence field. Kiliç [128]

studied the spinning disc flow using the same turbulence models as Morse, with a multigrid solver (in

which the turbulence parameters were only solved on the finest mesh) adopting the following initial

turbulence levels3:

k = 10−6 (Ωr)2 (6.2)

µt = 0.09µ (6.3)

ε = 0.01ρ
k2

µ
(6.4)

In contrast to the earlier studies, Kiliç reported that this initial turbulence field was sufficient to cause

transition without the need for an artificial production of kinetic energy input.

The following sections describe the initialization of the dynamic field used with low-Reynolds-

number models, standard wall functions and the UMIST-N wall function.

Low-Reynolds-Number Model

Tests with the low-Reynolds-number models showed that with different starting conditions for k and

ε (or µt ) not only could the flow revert fully to laminar, but that the radial location of transition

could be shifted according to the initial turbulence levels chosen. Furthermore, an increase in the

under-relaxation moved the transition point to higher rotational Reynolds numbers (i.e. radially out-

ward), particularly for lower initial values of k and µt . Table 6.3 shows a matrix with different initial

conditions for k on the x-axis and different initial conditions for µt on the y-axis. The cells in the

table indicate whether the calculation was stable starting from the specified turbulence levels, and

if so, a description of the flow: whether the boundary layer was completely laminar or, if transi-

tion from laminar to turbulent flow occurred, its location given by the rotational Reynolds number(
Reφ = Ωr2/ν

)
. Initial ε values for each entry can be calculated from ε = ρcµk2/µt . The calculations

described in the Table 6.3 were all obtained using the Launder & Sharma k−ε model with power-law

3There may be an internal inconsistency in Kiliç’s values, since typically one would set the levels of two of the variables:
k, µt and ε, and obtain the third parameter from the definition of the eddy-viscosity, µt = ρcµk2/ε. If one accepts the value
Kiliç quotes for ε and takes the value of cµ = 0.09, the initial eddy-viscosity would be µt = 9µ.
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differencing (PLDS [74]) for the convective fluxes of momentum and turbulence parameters, and the

under-relaxation factors4 given in Table 6.1.

k = 10−5 (Ωrb)
2 k = 10−4 (Ωrb)

2 k = 10−3 (Ωrb)
2

µt = 10µ marginally stable stable stable
laminar Reφ ≈ 4.8×105 Reφ ≈ 1.0×106

µt = 100µ marginally stable stable stable
mostly laminar Reφ ≈ 1.3×105 Reφ ≈ 1.3×105

µt = 400µ unstable marginally stable stable
Reφ ≈ 1.3×105 Reφ ≈ 1.3×105

Table 6.3: Predicted transition locations using the low-Re Launder & Sharma k− ε model with differ-
ent initial turbulence levels

A comparison of the predicted Nusselt number for four of the cases given in Table 6.3 is presented

in Figure 6.15. The strong dependence upon the initial turbulence level and the degree of under-

relaxation was traced to the initially large magnitude of the near-wall turbulence damping terms and

the relatively slow development of the boundary layer with low-Re models. In the very first iteration

of the numerical simulation, the wall has tangential velocity (Ωr) whilst the neighbouring fluid el-

ements have zero velocity. The large initial near-wall velocity gradient (∂W/∂y) led to appreciable

damping of the turbulence by the gradient production, Pε3, in the ε̃-equation5 . In cases with low initial

turbulence levels, the near-wall turbulence was heavily damped in the initial stages of the calculation

and the turbulence level elsewhere had decayed to such an extent that by the time that the boundary

layer had developed the whole flow became laminar. If the update of the momentum equations was

slowed by increasing the level of under-relaxation, the turbulence had a proportionally greater time to

dissipate before the boundary layer developed, and so one saw that the location of transition moved

progressively downstream as the level of under-relaxation increased. In contrast to cases of bypass

transition, where diffusion of turbulent kinetic energy into the boundary layer from the main flow is

responsible for transition, in the free-disc flow the level of turbulence in the surrounding region is zero

and so, no matter how long the calculation is run, once the boundary layer has fully laminarized it will

never become turbulent6 .

If high initial values of k and µt were specified, the turbulence level still decayed as the calculation

progressed, but µt was sufficiently large by the time that the boundary layer had developed that there

4Lower under-relaxation factors were required with k = 10−5 (Ωrb)
2 to obtain converged results (αU,V,W = 0.1 and

αP = 0.2).
5The behaviour of the numerical simulation in the first few iterations is highly complex with large velocity gradients

driving both production and destruction terms in the turbulence field. The gradient production term has been singled out
here as this term was found to be of particularly large magnitude initially and, as will be discussed with the UMIST-N
wall function, a temporary switch to remove or clip Pε3 in the early stages of a calculation was found to lead to a turbulent
boundary layer developing with transition in the correct location. This could, however, be attributed to the temporary
removal of a turbulence sink, and it may be that a similar outcome could be obtained by reducing other turbulent kinetic
energy sink terms.

6Once k has fallen to zero, or been clipped to a very small but positive value, the eddy-viscosity, µt = cµ fµk2/ε̃, is also
practically zero, so that no matter how large the strain-rates, the production of turbulent kinetic energy, Pk = µtSi j∂Ui/∂x j ,
is never sufficiently large to increase the turbulence level.
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was sufficient production of kinetic energy to sustain the turbulence. The fully turbulent boundary

layer then decayed to a laminar boundary layer in regions of low strain-rate, near the axis of the disc.

Whilst this approach of specifying a high level of initial turbulence solved the laminarization problem,

it was at the expense of the computational time, since one was starting from an initially unrealistic

turbulence field.

The alternative to specifying a high initial turbulence field to correctly capture transition was to ini-

tialize the dynamic field so that the boundary layer had already partially developed before turbulence

parameters were evaluated. The near-wall velocity gradient was then of more moderate magnitude, so

that the initial values of the near-wall turbulence damping terms were reasonable. The boundary layer

also extended further into the flow domain, so that production of turbulent kinetic energy was not

restricted to such a thin layer adjacent to the wall. To initialize the dynamic field, the momentum and

pressure-correction equations were solved with frozen µt for the first 1000 iterations (approximately

5% of the total number of iterations required for the calculation to converge) before calculation of k

and ε̃ commenced. Using initial turbulence levels of k = 10−5 (Ωrb)
2 and µt = 10µ, which had previ-

ously led to a totally laminar boundary layer (see Table 6.3 and Figure 6.15), transition was predicted

at precisely the location previously obtained when a much greater initial level of turbulence was spec-

ified
(
Reφ ≈ 1.3×105

)
. In fact, by initializing the dynamic field using a frozen µt before starting to

solve for k and ε̃, the same transition location was predicted, independent of the initial turbulence level

or the degree of under-relaxation. This, perhaps, explains the previous findings of Kiliç [128] who

studied the spinning disc flow using a multigrid solver, in which the turbulence parameters were only

solved on the finest grid. Kiliç did not report any problems obtaining transition to turbulence, unlike

previous authors. In effect, the multigrid method initialized the dynamic field before starting to solve

for the turbulence parameters.

“Standard” Wall Functions

The simplified Chieng & Launder (SCL) and the Chieng & Launder (CL) wall functions both pre-

dicted transition whilst the TEAM wall function treated the boundary layer as fully-turbulent across

the whole of the disc. The location of transition with the SCL and CL wall functions was shifted

according to the initial turbulence levels specified. Figure 6.16 shows Nusselt number predictions

from using two different initial turbulence levels for the SCL and CL wall functions respectively. The

initial turbulent kinetic energy level in all cases was k = 10−5 (Ωrb)
2 with the solid lines representing

an initial eddy-viscosity µt = 10µ and dashed lines µt = 400µ.

Figure 6.16 shows that different initialization of the flow field can lead to different predicted tran-

sition locations. There are also “spikes” in the Nusselt number predictions with both wall functions

near to transition. These spikes were due to the switch within the wall functions which stated that

if y+ > 11.6 at the near-wall node, turbulent boundary conditions applied, otherwise the flow was

assumed to be laminar. Figure 6.17 shows that changing the level of under-relaxation has a small but

measurable effect on the predicted Nusselt number when using the Chieng & Launder wall function.
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The approach described above for low-Re model calculations to obtain results independent of

initial turbulence levels is unlikely to work with standard wall functions. The problems with low-Re

models are related to the over-damping of turbulence in the initial stages of a calculation when there

are very large strain-rates near the wall. Standard wall functions do not include low-Reynolds-number

damping terms and hence are not affected in this way. One could investigate using the wall shear

stress instead of k1/2 as the scaling parameter in the friction velocity, Uτ, used by the wall functions.

This may solve the immediate problem of the standard wall functions switching between linear and

logarithmic velocity profiles when k falls below a certain level, but in flows involving separation or

reattachment the wall shear stress vanishes and one is forced to use k1/2 in Uτ.

UMIST-N Wall Function

The UMIST-N wall function required some attention in order to obtain transition to turbulence that

was independent of the specified initial turbulence level. Without any special treatment, solving mo-

mentum and turbulence parameters from the start of the calculation, and initializing both the main-grid

and the subgrid with a moderate turbulence level (say, k = 10−5 (Ωr)2 and µt = 10µ), the calculation

diverged after approximately 100 iterations. The instabilities stemmed from the wall shear stress

changing sign, a consequence of the tangential velocity at the near-wall node becoming greater than

that at the wall. This was traced to the initial viscosity profile adopted across the subgrid which,

during the first few iterations, led to a rapid change in tangential velocity across the wall-adjacent

subgrid cell. The large strain-rate across the wall-adjacent subgrid cells led to a very large tangential

wall shear stress, τwall,φ, and gradient production source term, Pε3. The overly large τwall,φ caused the

main-grid tangential velocity to exceed the wall velocity whilst the subgrid-averaged source term Pε3

was sufficient to suppress the turbulence in the near-wall cell, leading in some cases to laminarization

of the boundary layer.

To initialize the subgrid such that predictions were independent of the initial turbulence level, the

following steps were taken:

• The main-grid and subgrid velocity fields were initially zero.

• The main-grid and subgrid were initialized with a specified level of turbulence (any of the values

given in Table 6.3).

• The value of Pε3 obtained from the first subgrid iteration was set to zero.

• A constant value of µt was assumed across all of the subgrid cells (calculated from the initial

turbulence level and µt = ρcµk2/ε) except for two wall-adjacent subgrid cells in which the

subgrid eddy-viscosity was reduced to approximately µt ≈ µ (the solution was insensitive to the

actual value, as long as it was in the range 0.5µ < µt < 3µ). This condition was only applied for

the first iteration, after which µt was calculated from µt = ρ fµcµk2/ε̃ as usual7 .

7The relation µt = 0.09k2/ε did not hold within the two wall-adjacent subgrid cells since initial values for µt were
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6.3.6 Differential Length-Scale Correction

In tests with the free-disc flow, it was found that the original differential Yap correction developed

by Iacovides & Raisee [66], given by Equation (2.17) with constant cw = 0.83, introduced numerical

instability arising from a significant turbulent length-scale gradient at the edge of the turbulent bound-

ary layer. This was despite the actual turbulence level being practically zero in this region. Figure

6.18 shows contours of the turbulent length scale gradient
(∣∣∂l/∂x j

∣∣) for the free-disc flow. Near the

axis of the disc the flow is laminar; at a radius of approximately r/D = 0.12 transition occurs and

thereafter one can see in Figure 6.18 the radial growth of the turbulent boundary layer. At the edge of

the turbulent boundary layer there are large turbulent length scale gradients related to the difference

between the value of the length scale at one node inside the boundary layer and the length scale at the

neighbouring node in which the value of k was clipped to a very small but finite value (10−15). Clip-

ping was applied after each successive iteration of the k-equation such that the minimum value of k

was 10−15. If this clipping was not applied, small negative values of k could arise during the iteration

process, especially in regions where k was naturally very small (i.e. outside the turbulent boundary

layer). Additionally, zero values of k introduce singularities into the ε̃-equation source terms which

involve the ratio ε̃/k. Figure 6.19 shows the magnitude of the differential Yap correction, Ydc, based

on the length-scale gradient shown in Figure 6.18. Numerical instability was caused by the significant

correction to the ε̃-equation (with Ydc ≈ 107) at the edge of the turbulent boundary layer.

The Iacovides & Raisee turbulent length scale correction was later modified by Craft et al. [67],

who introduced a variable cw term (see Equation 2.20) to reduce the degree of correction in regions

of high straining. This correction improved the numerical stability and the resulting Yap correction

is shown in Figure 6.20. The differential Yap correction has a small effect on the Nusselt number

predictions of the free-disc flow (see Figure 6.21), whereas the “standard” Yap correction returns

results practically identical to those obtained using the same model without the Yap correction.

In addition to the above comments on the need for the Craft et al. modifications, it was found nec-

essary to activate the differential length-scale correction only once the calculated flow field had settled

down and the boundary layer had partially developed. Introducing the differential Yap correction at

the start of a calculation led to divergence due to fluctuations in the turbulence length scale.

6.3.7 Code Validation

To show that the code used in the present study produced the correct behaviour in the laminar region

of the free-disc flow, the flow up to a rotational Reynolds number of 100,000 was studied using the

same low-Reynolds-number model employed in turbulent flow calculations. Following a similar study

undertaken by Kiliç [128], the height of the domain was set to 0.03D (where D is the disc diameter)

which corresponded to at least three times the boundary layer thickness predicted by Cochran’s nu-

merical solution of von Kármán’s equations for laminar flow over the free-disc [131]. Calculations

specified in addition to values of k and ε̃.
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were performed on a 60× 60 grid (shown in Figure 6.22) with the Launder & Sharma k− ε model

[13].

Figure 6.23 shows the three velocity components in dimensionless form, as suggested by von Kár-

mán [129], compared to the similarity solutions of Owen & Rogers [132]. Symbols show the result of

overlaying the predicted velocity at three different Reynolds numbers, Reφ = 9000, 25000 and 49000.

The three results at different Reynolds numbers are indistinguishable and show excellent agreement

with the calculations of Owen & Rogers. The predicted moment coefficient, cm, defined as the di-

mensionless integral moment on the disc (cm = M/0.5ρΩ2r5, where M = −2π
� r

0 r2τφdr), is shown in

Figure 6.24. At the outer edge of the disc, the low-Re model agreed with Cochran’s [131] solution

for cm to within 6 significant figures. However, there is a greater discrepancy between the present

predictions and Cochran’s values as one approaches the axis of the disc where, at Reφ = 6000, there

is a difference of 15%. This discrepancy may simply be due to any errors in the numerical integra-

tion used to calculate the moment coefficient increasing as the radial width of the cell, ∆r, increases

relative to the radial position, r. These results were considered to show satisfactory validation of the

numerical code performance, at least at low Reynolds number.

6.4 Calculated Flow Results

6.4.1 Linear k− ε Model

Figures 6.25 – 6.28 compare the radial and tangential velocity profiles obtained using the three stan-

dard wall functions and the new UMIST-N wall function at three radial positions with results obtained

from the low-Reynolds-number Launder & Sharma model and the experimental velocity measure-

ments by Cham & Head [116]. In these figures, the distance from the wall, y, is non-dimensionalized

with the momentum thickness, θ =
� ∞

0 |W/Ωr (1−W/Ωr)|dy. Semi-logarithmic plots of the dimen-

sionless radial and tangential velocity8 , U∗ and W ∗, are also shown for the different wall functions and

compared to the low-Re predictions and the “universal” log-law in Figures 6.29 – 6.32. Radial and

tangential wall shear stress predictions for the four different wall functions are presented in Figures

6.33 – 6.40, where results using four different main-grid arrangements are compared to low-Re model

predictions. Similarly, integral and local values of the Nusselt number are presented for the different

wall treatments and grid arrangements in Figures 6.41 – 6.49. Although integral Nusselt number com-

parisons are informative, since experimental data is available (Cobb & Saunders [130]), the integral

Nusselt number involves averaging the heat transfer across the whole of the disc and therefore the

transition from laminar to turbulent flow is indistinct. To enable a closer examination of transition,

plots of the local Nusselt number are also provided. Finally, the y+ values for the different main-grid

arrangements are shown in Figures 6.50 – 6.53.

All of the wall functions show good agreement with the low-Re tangential velocity profiles as one

8The superscript ∗ refers to the velocity scaling used by Chieng & Launder [49], where U ∗ = k1/2U/
(
τwall,r/ρ

)
and

y∗ = k1/2y/ν (i.e. U+ = c1/4
µ U∗ and y+ = c1/4

µ y∗) and the local value of k is used, not the value at the near-wall node.



124 CHAPTER 6. Spinning “Free” Disc Flow

might expect, since the tangential velocity exhibits a log-law profile in the fully-turbulent inner-region

of the boundary layer. The radial velocity is under-predicted by both the SCL and the CL treatments

(Figures 6.26 and 6.27) but the TEAM wall function, which assumes a fully-turbulent boundary layer

across the whole of the disc, shows surprisingly good agreement with the radial velocity predicted

by the low-Re model (Figure 6.25). However, Figures 6.29, 6.30 and 6.31 show that the logarithmic

profile is clearly inapplicable for the radial velocity. Similarly, the wall shear stress predicted by the

standard wall functions (Figures 6.33 – 6.38) shows good agreement with the low-Re model in the

tangential direction but poor agreement with the radial wall shear stress. Here, the use of the log-law

to prescribe the radial velocity results in the underprediction of the low-Re model radial wall shear

stress by up to 50%. Moreover, the TEAM, SCL and CL wall functions all exhibit a strong sensitivity

in the predicted radial wall shear stress to the size of the near-wall cell (as indicated by the grid size

in Figures 6.34, 6.36 and 6.38).

The predicted velocity using the UMIST-N wall function shows excellent agreement with the low-

Re model results on both linear and semi-log axes (Figures 6.28 and 6.32 respectively). The velocity

predictions also show good agreement with the experimental profiles although the near-wall peak in

the radial velocity is under-predicted slightly at Reφ = 1× 106 and Reφ = 2× 106. The main-grid

values of the tangential velocity, W ∗, are slightly higher than the low-Re model predictions shown in

Figure 6.32. This may be due to the linear interpolation used to define the boundary conditions at the

outer edge of the subgrid. A similar small discrepancy in the log-law was found in the fully-developed

channel flow between the near-wall main-grid nodal values and the low-Re result. In contrast to the

standard wall function predictions, the wall shear stress in both the radial and tangential directions

predicted by the UMIST-N wall function is in good agreement with the low-Re model predictions

(Figures 6.39 and 6.40). The UMIST-N results also show far less sensitivity to the size of the near-wall

cell than the other wall functions. The coarsest main-grid mesh with 22× 120 cells gave somewhat

lower tangential wall shear stress and slightly higher radial wall shear stress than that predicted by

the low-Re model and the other UMIST-N wall-function grids. The number of subgrid nodes across

the wall-adjacent control volume with the 22× 120 grid was sufficient to give results independent

of the subgrid node density and therefore the disparity between this result and the other UMIST-N

wall function results must be due to the relative coarseness of the main-grid. In fact, as shown in

Figure 6.53, the maximum y+ with the 22× 120 grid was over 300, which is more than three times

the recommended maximum cell size suggested by Morse [124] and Virr et al. [121] for the spinning

free-disc flow.

At rotational Reynolds number, Reφ, above 20,000 the predicted local Nusselt number using the

TEAM wall function (Figure 6.42) increases linearly with rotational Reynolds number and misses

altogether the transition from laminar to turbulent flow predicted by the low-Reynolds-number model

and observed experimentally. The TEAM wall function exhibits little dependence upon the size of the

near-wall cell at high-Reφ. However, at low rotational Reynolds number (Reφ < 20000) the predicted

Nusselt number is sensitive to the grid size, as shown by the integral Nusselt number plot (Figure
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6.41). Near the axis of the disc, at low-Reφ, the wall-adjacent node is located within the viscous

sublayer and hence a linear velocity profile is assumed. However, since the wall-function grid does

not contain sufficient nodes to resolve the near-wall flow, the solution is grid-dependent. The Nusselt

number predicted with the SCL and CL wall functions is even more sensitive to the size of the near-

wall cell (Figures 6.43 and 6.45). Additionally, the SCL and CL treatments produced spikes in the

local Nu profile near transition due to the switch used to select laminar or turbulent wall functions at

a specified y+. As previously noted (see Section 6.3.5) these results are dependent upon the initial

turbulence levels chosen.

The UMIST-N wall function shows good overall agreement with the low-Re Nusselt number (Fig-

ures 6.47 and 6.48). The slope of the Nu profile in the laminar and turbulent regions of the flow are

close to those observed with the low-Re model but there is some sensitivity to the size of the near-wall

cell in the predicted transition location. Using different near-wall cell sizes corresponding to maxi-

mum y+ between 70 and 310, the transition point varied from Reφ ≈ 0.7× 105 to Reφ ≈ 2.1× 105,

whereas the low-Re model predicted transition at Reφ ≈ 1.2× 105. Although this feature is undesir-

able, it is not entirely surprising since it is well known that the correct prediction of transition is highly

sensitive to the numerical scheme. It was shown earlier that transition is sensitive to radial grid density

and the use of logarithmic coordinates in Figures 6.47 and 6.48 also magnifies any small differences

in the location of transition. The same results to those shown in Figure 6.48 are plotted on linear axes

in Figure 6.49 which shows that the local Nusselt number predicted using the coarsest main-grid mesh

of 22×120 cells is somewhat lower than that predicted by the finer grids, a consequence of the poor

resolution of the flow with so few main-grid nodes.

6.4.2 NLEVM

Figure 6.54 compares the predicted integral and local Nusselt number for the free-disc flow using

the low-Reynolds-number linear and non-linear k − ε models. There is little difference in the heat

transfer predictions between the two models with the exception that the NLEVM delays slightly the

onset of transition compared to the linear model, from Reφ = 115,000 to 150,000. The similarity

between the two different models is not entirely unexpected, since the additional terms in the NLEVM

are primarily effective in cases of separation and impingement (features which are absent from the

spinning free-disc flow). Radial and tangential velocity profiles for the linear and non-linear models

are shown in Figure 6.55 and semi-logarithmic U ∗ and W ∗ profiles are shown in Figure 6.56. In each

case, profiles are shown for three radial positions, corresponding to the rotational Reynolds numbers

at which Cham & Head [116] obtained experimental velocity measurements. The two models are

practically indistinguishable on the linear axes velocity plots whilst the NLEVM predicts a slightly

higher value of U ∗ and W ∗ in the fully-turbulent region (20 ≤ y∗ ≤ 200). This latter effect was due

to a difference in the near-wall turbulent kinetic energy profile predicted by the two models. Figures

6.57 and 6.58 compare normal and shear Reynolds stress profiles at three different rotational Reynolds

numbers obtained using the low-Re linear k−ε model and the NLEVM (unfortunately no experimental
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data has been found with which comparisons can be drawn). As expected, the linear model produces

an isotropic stress field (u2 ≈ v2 ≈ w2) whilst, with the NLEVM, the tangential component of the

normal stress
(

w2
)

is significantly higher than the axial and radial components (u2 and v2). The shear

stresses in planes normal to the wall (uv and vw) are practically identical with the linear and non-linear

models. The most striking feature of the Reynolds stress profiles is with the shear stress in the plane

parallel to the wall (uw). The linear k−ε model predicts this to be practically zero whilst the NLEVM

predicts a comparatively large and negative near-wall value that increases towards a positive peak at

y/θ = 4 and then decays towards the edge of the boundary layer. In a linear model, the uw shear stress

is calculated from:

−ρuw = µt r
∂
∂r

(
W
r

)
= µt

(
∂W
∂r

− W
r

)
(6.5)

The wall velocity is a linear function of the radius (i.e. Wwall = Ωr) so near the wall at least one would

expect ∂/∂r (W/r) = 0. Figure 6.59 shows the velocity profiles at three radial positions, also shown in

Figure 6.55, overlaid on the same set of axes. The dimensionless tangential velocity (W/Ωr) shows

little change between a rotational Reynolds number of 3.4×105 and 2×106. The negligible value of

uw predicted by the linear model is thus a consequence of the radial gradient of (W/r) being close to

zero. The shear stress uw is not zero with the non-linear k− ε model since the stress is also affected

by quadratic and cubic functions of strain-rate and vorticity.

Previous studies have shown that the Craft et al. two-equation NLEVM can produce unrealizable

(negative) axial normal stress, v2, in flows where there is a strong swirling component of velocity

[133]. In a purely swirling flow, the only velocity gradient is ∂W/∂r and hence the only finite vorticity

component is Ω13 = −∂W/∂r−W/r. Simplifying the expression for turbulence anisotropy, Equation

(2.27), the axial normal stress is given by:

v2 =
2
3

k− 2
3

c3
νt k
ε̃

(Ω13)
2 (6.6)

The sign of v2 is thus dependent upon the value of the constant c3 which the Craft et al. non-linear

k− ε model takes as c3 = 0.26. Gatski & Speziale [27] recommended that coefficient of the quadratic

vorticity term (which, in the Craft et al. model corresponds to c3) should be zero in purely swirling

flow. The three-equation k − ε−A2 model Craft et al. [134] used invariants of the strain-rate and

vorticity tensors to remove the non-linear contribution to v2 in purely swirling flow. The free-disc

flow is not a purely swirling flow, having significant velocity gradients in the axial (wall-normal)

direction and finite radial velocity. In the present study it was found that, using the Craft et al. k− ε
model, the normal stress was positive near the wall, as shown in Figure 6.57. Away from the wall,

towards the edge of the turbulent boundary layer, the normal stress decreased to zero and in some

cases there were small overshoots with negative normal stress levels of approximately −10−14. Since

the gradient of the stress is used in the momentum equations, rather than its actual value, the small

negative stresses were inconsequential.

Figures 6.60 – 6.63 compare the predicted velocity using four different wall functions with the



6.5. Computational Costs 127

low-Re NLEVM results and experimental data from Cham & Head [116]. Semi-logarithmic plots of

the dimensionless velocity, U ∗ and W ∗, are shown for the different wall functions and compared to

the low-Re predictions and the “universal” log-law in Figures 6.64 – 6.67. Predicted integral Nusselt

number are also shown for the four different wall functions and compared to the low-Re NLEVM

result and experimental data from Cobb & Saunders [130] in Figures 6.68 – 6.71. The behaviour of

the wall functions with the NLEVM is practically identical to that previously observed with the linear

k− ε model (see above). The UMIST-N wall function shows superior performance to the other wall

functions in predicting the radial and tangential velocity in the fully-turbulent region of the boundary

layer and the location of transition predicted by the UMIST-N wall function shows a similar degree of

dependence upon the size of the near-wall cell to that exhibited by linear model.

6.5 Computational Costs

Tables 6.4 and 6.5 show comparisons of computing times for the free-disc flow using the linear and

non-linear k− ε turbulence models respectively. In all cases the turbulence field was initialized with

k = 10−5 (Ωr)2 and µt = 10µ. Under-relaxation factors used in the low-Re and standard wall-function

calculations and in the main-grid region of the UMIST-N wall-function calculations are those given in

Section 6.3.2. The QUICK differencing scheme was used for momentum and temperature equations

(except for the wall-adjacent cells) and PLDS was used for all other quantities. Calculations were

performed on a single processor of a Silicon Graphics Origin 2000 with the same levels of compiler

optimization in each case. The UMIST-N wall function required 30 subgrid cells in order to obtain

grid-independence.

Model Tested No. of Nodes Time No. of Total Relative
per Iter (s) Iterations CPU Time (s) CPU Time

TEAM WF 120×28 0.07 2009 136 1

Chieng & Launder 120×28 0.07 2208 154 1.1

UMIST-N 120×28(+30) 0.14 2363 339 2.2

Low-Re 120×70 0.20 19928 3996 29.4

Table 6.4: Computing times for the free-disc (Re = 3.3×106) with the linear k− ε model

Model Tested No. of Nodes Time No. of Total Relative
per Iter (s) Iterations CPU Time (s) CPU Time

TEAM WF 120×28 0.11 3917 410 1

Chieng & Launder 120×28 0.10 4181 415 1.0

UMIST-N 120×28(+30) 0.19 3623 692 1.7

Low-Re 120×70 0.25 21390 5272 12.9

Table 6.5: Computing times for the free-disc (Re = 3.3×106) with the non-linear k− ε model

In the previous study of an impinging jet using different wall treatments (Chapter 5), the UMIST-N
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wall function was up to 60% slower than the Chieng & Launder wall function and about 8 times faster

than a low-Reynolds-number model. In the present study, with the linear k− ε model, the UMIST-N

wall function takes twice as long as a standard wall function but is more than 13 times faster than the

low-Re model. Using the NLEVM, the difference is slightly less with the UMIST-N wall function

taking 70% more computing time than the Chieng & Launder wall function but only one eighth of

that of the low-Reynolds-number model.

There are several factors which increase the relative computing times for the free-disc flow. Firstly,

there are two wall-parallel velocity components in the free-disc flow, whereas the axisymmetric im-

pinging jet tested previously did not have a swirling velocity component. The swirling and radial

components of velocity are also strongly coupled in the free-disc flow through the source terms ap-

pearing in the U and W momentum equations. The number of nodes in the wall-parallel direction

used in the present calculations exceeds that used in the earlier study and if one multiplies the number

of transport equations solved per-node by the number of nodes for the impinging jet and the free-disc,

one finds that in the impinging jet the number of calculations performed in a low-Re iteration was

twice that of the standard wall functions whilst in the free-disc the corresponding ratio was 2.5.

6.6 Discussion & Conclusions

It has been shown that “standard” wall-functions have a number of shortcomings in predicting the

free-disc flow. The “universal” log-law adequately approximates the near-wall tangential velocity

profile but is inappropriate for the radial velocity. Moreover, standard wall functions are unable to

account correctly for transition from laminar to turbulent flow. It has been demonstrated that new

UMIST-N wall-function treatment, based on the integration of simplified transport equations across

a near-wall subgrid, is able to capture the skewing of the velocity profile in the near-wall region and

shows excellent agreement with velocity predictions obtained using low-Reynolds-number treatments.

Nusselt number predictions using the UMIST-N wall function are also in good agreement with those

of low-Re models in contrast to the other standard wall functions tested. The location of transition

from laminar to turbulent flow predicted by the UMIST-N wall function showed some sensitivity to

the size of the near-wall control volume although the results were close to those obtained with low-Re

models. The UMIST-N wall function calculation was also between 8 and 13 times faster than the

corresponding low-Reynolds-number calculation in the free-disc flow, similar to the savings observed

previously in an impinging jet flow.

The linear k − ε model of Launder & Sharma [13] and the non-linear k − ε model of Craft et

al. [67] were both tested. Results with the two models were broadly similar except for a slight delay

in transition with the NLEVM and some differences with the stress profiles. It was found that the

more recent Craft et al. [67] version of the differential length scale correction was necessary in the

free-disc flow calculations to prevent numerical instability arising from significant turbulence length

scale gradients at the outer edge of the turbulent boundary layer.
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During the course of the present study, some interesting features relating to the initialization of

free-disc flow calculations were investigated. “Natural” transition was obtained in the computational

model by initializing the flow domain with a uniform level of turbulence; as the calculation progressed,

turbulence decayed in regions of low strain-rate leaving a laminar boundary layer near the axis of the

disc whilst at higher rotational Reynolds number the boundary layer remained turbulent. However,

it was found that the onset of transition from laminar to turbulent flow could be shifted by starting

the calculation from a different “guessed” turbulence level. One could even completely laminarize

the boundary layer by starting a low-Re calculation with relatively low, but finite turbulence levels

(µt = 10µ and k = 10−5 (Ωrb)
2). This sensitivity to the initial turbulence level was traced to the near-

wall turbulence damping terms which, during the initial stages of the calculation, were of considerable

magnitude due to the large velocity gradient between the spinning wall and nearby cells. It was found

that by freezing the eddy-viscosity and solving initially only the mean-flow equations (i.e. momentum

equations and pressure-correction) before commencing the solution of the turbulence parameters, one

could obtain low-Re model predictions that were independent of the initial turbulence levels. This

finding was used retrospectively to explain previous studies of the free-disc flow where, for example,

Kiliç [128] was able to capture natural transition (by using a multigrid solver where k and ε were

only solved on the finest grid) whilst Morse [126] was forced to apply an ad hoc correction to the

eddy-viscosity in order to obtain transition.



Chapter 7

Ahmed Body Flow

7.1 Introduction

The “Ahmed” body, shown in Figure 7.1, has the form of a highly simplified car, consisting of a

blunt nose with rounded edges fixed onto a box-like middle section and a rear end that has an upper

slanted surface (like a “hatch-back” car), the angle of which can be varied. The model is supported

on circular-sectioned legs or stilts, rather than wheels. Despite neglecting a number of features of a

real car (rotating wheels, rough underside, surface projections etc.) the Ahmed body generates the

essential features of flow around a car, namely: flow impingement and displacement around the nose,

relatively uniform flow around the middle and flow separation and wake generation at the rear.

The principal aim of studying such a simplified car body is to understand the flow processes

involved in drag production. Through understanding the mechanisms involved in generating drag

one should be able to design a car to minimize drag and therefore minimize fuel consumption and

maximize performance.

The principal contribution to drag experienced by a car is pressure drag. The rear of the vehicle

provides the major contribution to pressure drag and, in particular, the angle of the rear slant is critical

in determining the mode of the wake flow and hence the drag experienced by the vehicle. Janssen &

Hucho [135] found that the maximum drag was obtained for a vehicle with rear slant angle β ≈ 30◦

(to the horizontal) where the flow over the slant remained partially attached and longitudinal trailing

vortices were formed at the edges of the slant. For steeper slant angles (β > 30◦) the flow over the

rear slant became fully-separated and the drag decreased.

7.2 Previous Experimental and Computational Studies

In the original experiments undertaken by Ahmed [136] and Ahmed et al. [137], the angle of the

rear slant was varied from β = 0◦ to 40◦. Visualization techniques were employed to examine the

structure of the wake and time-averaged velocity measurements were made on the centreline plane

and at transverse planes in the wake. Measurements of the total drag were made at 5◦ intervals for

130
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slant angles from β = 0◦ to 40◦. The total drag was observed to fall from β = 0◦ to 15◦ and then rise

to a maximum at 30◦, followed by a sudden decrease, thereafter remaining almost constant between

30◦ and 40◦ (see Figure 7.2). A breakdown of the relative contributions to drag from pressure on

the nose, base1 and slant was taken at β = 5◦, 12.5◦, 30◦ (high drag) and 30◦ (low drag). A vertical

splitter plate in the symmetry plane was used in the wake of the 30◦ slant to encourage the low-drag

flow. This indicates that some unsteadiness in the wake may have been instrumental in maintaining

the high-drag 30◦ slant flow.

A physical description of the flow structure over the rear of the Ahmed body was presented in

some detail in the Ahmed papers and also in the more recent experiments undertaken by Lienhart et

al. [138] and Spohn & Gilliéron [139]. Figures 7.3 and 7.4 show sketches of the time-averaged wake

structure taken from the Ahmed et al. paper for the low drag β ≈ 20◦ and high drag β = 30◦ config-

urations, Figure 7.5 shows oil/soot streakflow visualization of the 25◦ and 35◦ slants from Lienhart

et al. and Figure 7.6 shows a diagrammatic representation of the wake over the 25◦ rear slant taken

from Spohn and Gilliéron. The low-drag configuration of the Ahmed body, with a rear-slant angle of

approximately 20◦, is characterized by longitudinal vortices which originate along the edges between

the side and the rear slant surfaces (vortex C in the Ahmed Figure 7.3). The formation of these side-

edge vortices is similar to that observed for low aspect-ratio wings where the high pressure on the

underside of the wing and low pressure above the wing forces fluid to flow around the edges of the

wing-tips. In the case of the Ahmed body, the fast moving air around the side of the body is pulled

into a low-pressure region just above the rear slant near the side edge and, in doing so, the flow curls

over to create a vortex which has its axis roughly aligned to the slant edge. Tucked just underneath

the large side-edge vortex is a smaller vortex which rotates in the opposite direction. The smaller

side-edge vortex is shown clearly in the Spohn & Gilliéron diagram (Figure 7.6) and the attachment

line which occurs on the surface of the slant between the large and the small side-edge vortices can

be seen on the Ahmed diagram (Figure 7.3). The flow over the 20◦ slant is fully attached, promoting

pressure recovery and low drag. Downstream of the base of the Ahmed body there are two horseshoe

vortices (marked as A and B in Figure 7.3) which interact with the flow leaving the slant, the side-edge

vortices and the flow from the underside of the body. As the slant angle is increased from 20◦ to 30◦

the strength of the side-edge vortices increases and a separation bubble appears at the leading edge

of the slant (where the slant meets the top surface of the Ahmed body). On the 25◦ rear slant, the

oil/soot streakflow shows a separated flow region near the leading edge which reattaches roughly half-

way down the slant and remains attached until the edge is reached between the slant and the vertical

base. The separation bubble appears to be slightly larger in the diagram of Spohn & Gilliéron for

the 25◦ slant which may be a consequence of the lower Reynolds number used in their experiments

(Re ≈ 3×104, compared to the Lienhart et al. visualization which was carried out at Re ≈ 9×104) or

the lower turbulence level in the boundary layer approaching the slant2. Spohn & Gilliéron also noted

1“base” refers to the vertical plane surface on the rear of the Ahmed body, below the slant.
2Lienhart et al. employed a trip on the curved part of the front of the Ahmed body to increase turbulence levels in the

boundary layer whereas Spohn & Gilliéron did not use a trip.
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that whilst the flow near the leading edge of the slant is steady, the flow closer to the downstream

end of the slant is highly unsteady. The low pressure induced by the separation bubble and the strong

side-edge vortices lead to a high pressure-drag on the slant surface. The Ahmed figures show the

separation bubble increasing in size as the slant angle is increased up to 30◦. For the high-drag 30◦

slant, the bubble (shown as vortex E in Figure 7.4) reaches practically to the downstream edge of the

rear slant before the boundary-layer reattaches.

For the low-drag configuration for the 30◦ slant, and at higher slant angles, the separation bubble

over the rear slant merges with the upper of the two horseshoe vortices behind the base to create a large

recirculation region with weaker side-edge vortices. This is indicated by the oil/soot visualization for

the 35◦ rear slant (Figure 7.5).

A possible explanation for the switch from the high-drag mode at slant angles 20◦ < β < 30◦ to the

low-drag mode at slant angles greater than 30◦ was put forward by Menter at the 2002 ERCOFTAC

Workshop on Refined Turbulence Modelling3 . It was suggested that the size of the high-pressure

region (linked to the separation bubble located on the leading edge of the slant) grows as the slant angle

is increased from 20◦ to 30◦. At the critical slant angle of 30◦, the high-pressure region is sufficiently

large that it interferes with the low-pressure zone at the corner between the slant and the side of the

Ahmed body. As the strength of this low-pressure zone is reduced so the main driving force behind

the creation of the strong side-edge vortices is removed, the vortices become weaker and hence exert a

reduced force on the flow over the slant which then becomes fully separated. Additionally, as the slant

angle is increased up to the critical angle, the recirculation bubble on the rear slant extends beyond the

downstream end of the slant and combines with the upper horseshoe vortex downstream of the base.

As one tries to visualize this transition from high- to low-drag modes one should keep in mind that

in reality the flow is highly unsteady. This was demonstrated clearly by the large-eddy simulation of

flow around the 25◦ Ahmed body, presented by Hinterberger et al. at the 2002 ERCOFTAC workshop,

which showed an unsteady wake over the rear slant with eddies that were occasionally becoming

detached from the slant surface being convected downstream.

Perhaps the earliest simulation of the Ahmed body flow was undertaken by Han [140] who studied

a range of different slant angles using a finite-volume code and standard linear k − ε model with

wall functions. Han found that the drag coefficient for slant angles in the range 0◦ < β < 20◦ were

consistently predicted around 30% too high. This was attributed to an overly low pressure on the

base of the body. At the critical slant angle of β = 30◦ no separation was predicted over the slant

and the steep rise in drag reported by Ahmed for slant angles in the range 25◦ < β < 30◦ was not

calculated. Wilcox [14] suggested that the poor predictions obtained by Han were due to the linear

3Simulations of flow around the Ahmed body were presented at two ERCOFTAC Workshops on Refined Turbu-
lence Modelling: at Darmstadt, Germany, in 2001, and at Poitiers, France, in 2002. Formal proceedings from the
2001 workshop have not been published although the details of the computational methods used by the participants
and cross-plots of the data are available from the workshop coordinator, Dr Jakirlic, on the TU-Darmstadt website:
http://www.sla.maschinenbau.tu-darmstadt.de/workshop01.html. At the time of writing, proceedings from the 2002 work-
shop have also not yet been published formally although it is planned to make the results freely available. Details of the 2002
meeting in Poitiers can be obtained from the workshop coordinator: Dr Manceau, Laboratoire d’études aérodynamiques,
University of Poitiers, France.
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k−ε model which is known to perform poorly in flows involving strong adverse pressure gradients. It

was suggested that the overly low base pressure was caused by a vortex which was too strong, which

was itself the result of an overly large wall shear stress being predicted by the k− ε model. Robinson

[35] noted that there are a number of other considerations which may have influenced Han’s results.

The linear k− ε model is well known to overpredict the turbulent kinetic energy at a stagnation point

and this may have led to an overly large level of turbulence energy in the boundary layer approaching

the slant which would encourage the flow to remain attached. A similar effect may have been obtained

from specifying too low a level of dissipation rate or too high a level of turbulent kinetic energy at

the inlet (the inlet turbulence levels were not specified in Han’s paper). Furthermore, it may have

been the simple log-law-based wall function employed by Han that was to blame for the overly large

wall shear stress which, following Wilcox’s analysis, was responsible for the base pressure being

too low. At the 2002 ERCOFTAC workshop, Leschziner presented some preliminary results which

indicated that the linear k−ω model of Wilcox was able to predict correctly the location and size of

the separation bubble at the leading edge of the slant for the 25◦ Ahmed body. This would indicate

that a model which responds more accurately to adverse pressure gradients is able to account for the

complex behaviour on the rear of the Ahmed body.

Authors Turbulence Model Slant Flow Mode

Guilmineau & Queutey low-Re SST k−ω model fully separated
(EC Nantes)

Braun, Lanfrit & Cokljat realizable linear k− ε fully attached
(Fluent) SST k−ω model separation bubble

Craft, Gant, Iacovides, linear k− ε with SCL wall function fully attached
Launder & Robinson linear k− ε with UMIST-N wall function fully attached

(UMIST) realizable linear k− ε with SCL WF fully attached
realizable linear k− ε with UMIST-A WF fully attached

cubic non-linear k− ε with SCL WF fully separated
cubic non-linear k− ε with UMIST-A WF fully separated

Durand, Kuntz, Menter linear k− ε with scalable wall function fully attached
(EC Nantes/CFX) low-Re SST k−ω model fully separated

SSG DSM fully attached
Leonard, Hirsch, Kovalev,
Elsden, Hillewaert & Patel low-Re linear k− ε (Yang-Shih) fully attached

(Vrije Universiteit,
Brussels/NUMECA)

Leschziner low-Re linear k−ω model separation bubble
(Imperial College)

Table 7.1: RANS simulations of the 25◦ Ahmed body flow contributed to the 2001 and 2002 ERCOF-
TAC Workshops on Refined Turbulence Modelling.

Table 7.1 lists a number of other recent calculations of the Ahmed body which were submitted to

the 2001 and 2002 ERCOFTAC Workshops on Refined Turbulence Modelling. In the final column of

the table, a brief indication of the flow regime over the rear slant of the 25◦ Ahmed body is given. Only

two simulations correctly predicted the appearance of a separation bubble at the leading edge of the
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25◦ slant: the SST model results from Fluent4 and the preliminary k−ω model results of Leschziner.

The Fluent results are, however, somewhat in doubt as two other simulations of the same flow using the

same SST model (from EC Nantes and CFX) predicted fully separated flow over the rear slant. This

apparent conflict in results may be due to differences in the grid, boundary conditions and convection

schemes employed. There is insufficient information provided in the description of the computational

methods to come to any firm conclusions. There is agreement amongst the numerous simulations

which used a linear k− ε model that the boundary layer remains fully attached for the entire length of

the 25◦ slant. The actual velocity profiles over the slant differ somewhat between different linear k−ε
model calculations which can be attributed to slight differences in the models (realizable, low-Re or

with wall functions), grid, boundary conditions and convection schemes. The realizable linear k− ε
model results from UMIST, in particular, showed a tendency towards a separated boundary layer at the

downstream edge of the rear slant. Both the UMIST non-linear k− ε model and the EC-Nantes/CFX

SST model predicted fully separated boundary layers over the entire rear slant. Interestingly, both

groups also found that running the same calculations again with a lower-order upwind convection

scheme caused the flow over the rear slant to become fully attached. This remarkably strong effect

of the convection scheme was analyzed in detail by Robinson [35] who concluded that the more

diffuse side-edge vortex predicted using the lower-order scheme was able to draw a sufficient amount

of fluid out of the boundary-layer on the slant to cause the flow to remain attached. Using a less-

diffusive, higher-order convection scheme the side-edge vortex predicted by the non-linear model

used by Robinson was insufficiently strong to cause the boundary layer to remain attached.

Hinterberger & Rodi submitted LES results for both the 25◦ and 35◦ Ahmed bodies to the 2001

ERCOFTAC workshop using a grid with approximately 8.8 million nodes and, the following year,

submitted results using a refined grid of 18.5 million nodes. The results from these huge calculations

(the more recent ones taking 30,000 CPU hours) showed no clear improvement in flow prediction

compared to the RANS approaches. The time-averaged boundary-layer over the 25◦ slant was pre-

dicted as predominantly separated, in poor agreement with the experiments, although the Reynolds

stress profiles over the rear slant showed better agreement with the experiments than any of the RANS

models (indicating that the LES may have captured correctly the level of unsteadiness seen in the

experiments). These slightly disappointing results may have been due to an averaging time used to

generate the mean-flow data which was relatively low (4.5 non-dimensional time-steps5).

The above discussion has concentrated on the prediction of flow in the vicinity of the rear slant as

this has the greatest contribution to the overall drag experienced by the Ahmed body. One could also

examine the flow in the wake downstream from the body although experience from the workshops

has shown that accurate prediction of the trailing vortices in the wake is strongly dependent upon

predicting the correct mode of flow over the slant.

4Fluent did not state explicitly that they used a low-Re modelling approach although they did use 2.3 million cells for the
half-body (a mixture of tetrahedral and hexahedral cells). This compares to the calculations presented in this thesis which
used 331,000 cells for the half-body using wall functions.

5where one time-step is equivalent to the time taken for a packet of fluid to travel the length of the flow domain, from
inlet to outlet.
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Suga et al. [141] studied a related flow, around the car body of Maeda et al. [142], using the low-

Re Launder-Sharma k− ε model and the three-equation cubic non-linear k− ε−A2 model of Craft

et al. [134]. The Maeda car body features a more rounded front section than the Ahmed body and

a rear slant which extends from the top to the bottom surfaces (i.e. the vertical “base” surface which

occurs on the rear of the Ahmed body is absent). The pressure coefficient distribution predicted by

the k−ε−A2 model was generally in good agreement with the experimental measurements, although

a separation bubble was predicted near the leading edge of the 25◦ rear slant whereas the experiments

suggested that there was almost no separation. The drag coefficient predicted by the linear k−ε model

was too high for all slant angles (25◦ to 55◦) which was attributed to excessive turbulence levels

generated around the leading edge of the body. The k − ε− A2 model predicted more reasonable

overall levels of drag coefficient, although the predictions were slightly too high at 25◦ (due to the

separation bubble) and too low at 35◦ and 55◦.

7.3 Computational Details

7.3.1 Models Used

The results from two calculations of the flow around the 25◦ Ahmed body are documented in this

thesis. The first calculation used the standard linear k − ε model of Launder & Spalding [143] in

conjunction with the Simplified Chieng & Launder (SCL) wall function, the second used the same

turbulence model with the low-Re damping functions of Launder & Sharma [13] and the new nu-

merical wall function (UMIST-N). Both calculations employed the standard Yap correction. The

UMIST-N wall function employed 45 subgrid nodes across the near-wall cell, clustered near the wall

using an expansion ratio of 1.09. This gave a maximum y+ < 0.1 for the wall-adjacent subgrid node

with a minimum of 10 subgrid nodes within y+ ≈ 13 (where y+ = c1/4
µ k1/2y/ν). Increasing the number

of subgrid nodes to 60 had no visible effect on the results of the simulation. It was originally intended

that results would be obtained using the non-linear Craft et al. model [30] with the UMIST-N wall

function, to complement the earlier work of Robinson (who used the Craft et al. model with two other

wall functions). However, the combination of non-linear model and UMIST-N wall function was

found to cause numerical instability in the calculations. Some suggestions for the possible causes of

the stability problems are discussed in Section 8.3. Further investigation and correction of the stability

problems was not possible within the framework of this thesis due to time and funding limitations.

7.3.2 Numerical Methods

The STREAM code, described in Section 3.3, was used to study the Ahmed body flow. Convection of

both momentum and turbulence parameters was approximated using the UMIST differencing scheme

discussed in Section 3.3.3. The flow was considered as steady and the symmetry plane was used so

that a grid was constructed only around half of the body. Calculations were converged until residuals
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of the momentum, mass and turbulence equations were all below 5× 10−6, approximately an order-

of-magnitude lower than that achieved in the previous calculations by Robinson [35] for the Ahmed

body flow, which were considered to be fully converged. Under-relaxation factors are shown in Table

7.2.

U V W P k ε
0.2 0.2 0.2 0.3 0.1 0.1

Table 7.2: Under-relaxation factors used for the Ahmed body flow.

7.3.3 Domain and Grid

Figures 7.7, 7.8 and 7.9 show the computational grid used to study the flow around the 25◦ Ahmed

body. The grid was identical to that used in a previous study of the Ahmed body by Robinson [35]

and employed 22 blocks (shown schematically in Figure 7.10) and approximately 331,000 cells. The

legs, or stilts, on which the model was supported in the wind tunnel experiments, were not modelled

in the computational grid. The effects of ignoring the stilts on the predicted drag and the flow field

are discussed later. The near-wall distribution of cells was arranged to maintain main-grid y+ values

of as many as possible near-wall cells around the body to within the limits 30 < y+ < 300 (where

y+ = c1/4
µ k1/2y/ν), but these limits were exceeded in some regions of stagnation and boundary-layer

separation or reattachment. The y+ values of the near-wall cells adjacent to the ground plane were not

controlled since to maintain y+ < 300 would have required high-aspect ratio cells which would have

compromised the stability of the calculation. Due to the large number of nodes required to model

the Ahmed body, it was not possible to refine the grids and establish grid independence. However,

Robinson did examine a coarser grid, with 158,000 cells, to provide some information regarding

grid independence. Using a realizable linear k− ε model, the flow over the entire 25◦ rear slant was

predicted to be fully attached with the coarse grid. In comparison, flow predictions using the finer

(331,000 cell) grid showed a greater tendency towards separation of the boundary layer at the trailing

edge of the slant. It was suggested that the enhanced “artificial diffusion” induced by the coarse grid

helped to maintain attached flow over the rear slant.

7.3.4 Boundary Conditions

The computational domain used to study the Ahmed body flow is shown in Figure 7.11. The Simpli-

fied Chieng & Launder (SCL) wall function was always used for the floor boundary whereas around

the surface of the Ahmed body either the SCL or the UMIST-N wall function were applied. The do-

main boundary along the centreline of the body (at y = 0), the opposite boundary at the outside limit of

the domain (y = 1.044m) and the upper domain boundary (z = 1.044m) were all treated as symmetry

planes. Ideally the upper and side domain boundaries would be treated with entrainment conditions.
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However, symmetry planes were used instead to provide a more stable calculation and were justifiable

as there is little deflection of the flow at these boundaries. The downstream outlet was set with zero-

gradient for all variables. Flat profiles (i.e. constant values) of velocity and turbulence parameters were

set at the inlet plane, one body-length upstream of the Ahmed body. Values of the inlet streamwise

velocity and turbulent kinetic energy were calculated by integrating the U - and k-profiles measured by

Lienhart et al. across the flow domain at x =−1.444m. This resulted in an inlet bulk U -velocity which

was lower (38.51ms−1) than the stated experimental bulk U -velocity of 40ms−1. The lower inlet bulk

velocity corresponded to an inlet Reynolds number of Re = 7.57× 105 (based on the body’s height)

which compares to the original Ahmed experimental value of Re = 1.18×106 . The Reynolds number

is sufficiently high that this minor adjustment should not have significantly influenced the results. The

average inlet turbulent kinetic energy was calculated as kin = 6.58×10−3m2s−2 and the inlet dissipa-

tion rate was calculated from a viscosity ratio of νt/ν = 10. This viscosity ratio was recommended by

Lienhart et al. following experimental measurements which estimated the Taylor microscale upstream

of the body as λ = 2.6mm, where the dissipation rate is given by:

ε =
2k
λ2 ν (7.1)

7.4 Calculated Flow Results

Figures 7.13 and 7.14 show profiles of the streamwise mean U -velocity and RMS u-velocity at six

measurement locations on the top surface of central portion of the Ahmed body, approximately mid-

way between the nose and the slant (positions shown in Figure 7.12). There is practically no difference

in the results obtained using the SCL and the UMIST-N wall functions. The predicted boundary layer

thickness is slightly greater than that found in the experiments and the freestream velocity is also

slightly higher in the calculations due to the blockage effect of the body and the use of symmetry

conditions at the far-field boundaries (the body blocked approximately 5% of the cross-sectional area

of the calculation flow domain).

If one examines more closely the near-wall region one can discern differences between the two

wall function predictions. Figure 7.15 shows profiles of the mean U -velocity, turbulent kinetic energy

and eddy-viscosity on the top surface of the Ahmed body (on the centreline) at x = −831mm, just

downstream of the curved section near the nose. These profiles show nodal values (not interpolated

values) and the UMIST-N wall function results show the subgrid distribution of U , k and µt across

the near-wall cell. There are clear differences between the UMIST-N and SCL wall function results

at this position, notably in the k and µt profiles. This can be attributed to the overprediction of k at

a stagnation point associated with the linear k− ε model being more pronounced with a low-Re type

treatment, as is effectively provided by the UMIST-N wall function, than with standard wall functions

(as discussed in Chapter 5). In addition, the UMIST-N wall function accounts for the effects of

pressure gradient and convection which are neglected by the SCL wall function. As one moves further

downstream along the top of the Ahmed body to a region where the flow is closer to equilibrium, the
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differences between the two wall function treatments becomes less pronounced (see Figure 7.16).

Progressing still further along the top (Figures 7.17 and 7.18) one can see differences in the two wall

function predictions becoming apparent again (although these differences are less than are observed

in Figure 7.15). Towards the leading edge of the slant, situated at x =−201.2, the streamwise velocity

increases and k decreases everywhere except very near the wall. This trend for k decreasing is what

one would expect in an accelerating boundary-layer flow [12]. On the slant surface (Figures 7.19,

7.20 and 7.21) a more pronounced difference in the levels of U , k and µt arises between the two wall

function predictions although the profiles are of similar general shape.

Figures 7.22 – 7.27 show centreline profiles of the mean-velocity, Reynolds stresses and turbu-

lent kinetic energy over the rear slant. Due to the scales needed in order to fit the multiple profiles

into one figure, the differences between the two wall function predictions are barely discernible al-

though differences between the predicted and experimental results can be seen quite clearly. These

differences are particularly visible for the Reynolds stress profiles where the experimental values are

nearly an order-of-magnitude larger than those predicted by the two wall functions. The significant

underprediction of the Reynolds stresses and turbulent kinetic energy was a feature of all the RANS

simulations of the Ahmed body which were submitted to the two ERCOFTAC workshops. Only the

LES results submitted to the workshops came close to predicting the experimental Reynolds stress

profiles.

The U -velocity profiles, Figure 7.22, show that the mean-flow recirculation bubble, observed in

the experiments, existed from the leading edge of the slant to around x = −100mm. With the linear

k − ε model, both wall functions predicted a fully attached boundary layer for the whole length of

the slant. This can be seen more clearly in Figure 7.28 which shows velocity vectors and pressure

coefficient contours over the rear slant as viewed from above6. The two wall function predictions are

similar with the UMIST-N wall function showing a minor increase in velocity near the downstream

edge of the slant as compared to the SCL wall function.

Figure 7.29 compares the resultant velocity vector at the near-wall main-grid node to that at the

wall-adjacent subgrid node over the rear slant of the Ahmed body, using the UMIST-N wall function.

There is considerable skewing of the velocity vector across the subgrid. Near the side edge of the rear

slant the subgrid and main-grid vectors are misaligned by up to 90◦. The subgrid results also show

that there was a reattachment line parallel to the side edge of the slant surface, similar to that shown

in the experimental results of Ahmed et al. (see Figure 7.3) and Spohn & Gilliéron (marked “B” in

Figure 7.6). Skewing of the velocity profile across the near-wall main-grid cell is ignored by standard

log-law-based wall functions (such as the SCL treatment) which assume that the wall-shear stress is

aligned to the resultant velocity vector at the near-wall main-grid node position.

Figures 7.30, 7.31 and 7.32 chart the growth of the wake from near the leading edge of the slant to

a position approximately one-half of a body length downstream (from x = −178mm to x = 500mm).

Experimental measurements of turbulent kinetic energy and mean velocity are compared to those pre-

6The resultant velocity vectors are obtained from the main-grid node values with the UMIST-N wall function, not the
subgrid values.
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dicted by the linear k− ε model with UMIST-N wall function (those obtained with the linear k− ε
model and SCL wall function are similar and are not shown). The underprediction of k near the slant

surface, discussed above, is shown clearly on Figures 7.30 and 7.31. In addition, the measured turbu-

lent kinetic energy is significantly higher than that predicted around the bottom of the model, near the

wind-tunnel wall. This latter feature is mainly due to the enhanced turbulence levels generated by the

stilts on which the body was supported in the wind tunnel, which were neglected in the computational

model. Over the rear slant the predicted side-edge vortex has the same location but is weaker than the

measured vortex. Further downstream, the predicted and measured trailing vortices are in remarkably

good agreement both in terms of position and strength (Figure 7.32). However, contours of turbulent

kinetic energy continue to show poor agreement in the wake downstream of the body with measured

peak values approximately twice the peak predicted values.

In order to provide a brief comparison of the current computations with those of Robinson [35]

(who used the same code and an identical grid but with different turbulence models) Figures 7.33

and 7.34 show contours of the turbulent kinetic energy at the centreline plane around the Ahmed

body. As previously discussed, there are some minor differences between the current linear k − ε
model predictions using the UMIST-N and SCL wall functions (Figure 7.33). The linear k− ε model

predictions of Robinson using the realizability constraint of May [144], shown in Figure 7.34, have

slightly lower levels of k in the impingement region on the nose of the Ahmed body and higher values

of k over the slant and in the wake, although the flow over the slant is still fully attached. The Craft

et al. [30] non-linear k− ε model also predicted low turbulence levels on the nose of the Ahmed body

and a fully separated boundary layer over the rear slant with a larger wake.

Drag Predictions

Tables 7.3 and 7.4 compare drag coefficients for the Ahmed body predicted by the present computa-

tions to those of Robinson [35] and the experimental measurements of Ahmed et al. [137] and Lienhart

et al. [138]. The reference pressure used to calculate the pressure coefficient
(
cp = (P−Pre f )/0.5ρU2

bulk

)

in both sets of computational results was taken at (x,y,z) = (−977mm,0mm,912mm) – vertically

above the nose of the body on the centreline plane. The values shown from Ahmed et al. have been

extracted from Figure 7.2 which plots the breakdown of the drag coefficient for slant angles from 0◦

to 40◦ . It should be noted that Ahmed et al. only actually measured the components of drag at four

slant angle 5◦, 12.5◦, 30◦ (high drag) and 30◦ (low drag). These measurements were then interpolated

to produce the continuous distribution shown in Figure 7.2. In addition, Ahmed et al. calculated the

friction drag by subtracting the three pressure-drag components (on the nose, slant and base) from

the total drag force on the car body. Any errors in the pressure-drag measurements would therefore

effect the value of the friction drag. There are differences between the pressure coefficients extracted

from Ahmed et al.’s graph and the more recent Lienhart et al. measurements. The Lienhart et al. mea-

surements show the pressure coefficient on the slant to be only around 36% higher than that on the

base, compared to Ahmed et al.’s assumed difference of 100%. In addition, Lienhart et al.’s values
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are slightly higher overall than those of Ahmed et al. It is not possible to identify whether the differ-

ences between the two sets of experimental data are due to differences in the location of the reference

pressure7 , inaccurate interpolation or experimental error since Lienhart et al. did not measure the total

drag or the pressure coefficient on the nose.

The total drag coefficient predicted by the current calculations using the linear k− ε model are

close to those obtained previously by Robinson with a realizable linear k− ε model. There are only

slight differences between the linear k−ε model predictions with the SCL and UMIST-N wall function

values (9.1% error for the SCL wall function compared to 8.4% with UMIST-N). The ratio of pressure

coefficient on the slant to that on the base is slightly higher with the linear model than the realizable

model although it is difficult to make conclusions about the accuracy of the two models due the

discrepancies in the experimental measurements mentioned above.

Table 7.3 shows that Robinson’s calculations using the non-linear model with the SCL wall func-

tion gave the total drag coefficient in best agreement with Ahmed et al.’s measurements. However, it

would be misleading to conclude from this that the model provided the best predictions of the flow

since it also predicted a fully-separated boundary layer over the rear slant, whereas in fact the flow

was predominantly attached. The difference in the predicted mode of the flow over the rear slant is

indicated by the balance between the slant and base pressure coefficients, shown in Table 7.4. The

non-linear model predicted the pressure coefficient on the base to be greater than that on the slant

whilst the linear models (and the experiments) predicted the opposite. This shows the importance of

looking at the breakdown of drag and not just the total value.

Case No Stilt With Stilt % Error

Ahmed et al. [137] - 0.285 -
linear k− ε, SCL 0.294 0.311 9.1
linear k− ε, UMIST-N 0.292 0.309 8.4
realizable k− ε, SCL (*) 0.294 0.311 9.1
realizable k− ε, UMIST-A (*) 0.293 0.310 8.8
non-linear k− ε, SCL (*) 0.267 0.286 0.4
non-linear k− ε, UMIST-A (*) 0.251 0.270 -5.3

Table 7.3: Total drag for the 25◦ Ahmed body. Realizable and non-linear k− ε model results, marked
with an asterisk (*), are taken from Robinson [35]. Allowance for the drag due to the stilts (on which
the body is supported in the wind-tunnel) is based on the drag on a circular cylinder (see [35]).

Influence of ∂P/∂ζ in the UMIST-N Wall Function

In Chapter 4 it was noted that the pressure-gradient term appearing in the non-orthogonal UMIST-N

wall function momentum equations involves gradients of pressure in all three coordinate directions.

7The location of the reference pressure was not specified by Ahmed et al.
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Case Pressure Coefficient Skin
Nose Slant Base Friction

Ahmed et al. [137] 0.020 0.140 0.070 0.055
Lienhart et al. [138] - 0.158 0.116 -

linear k− ε, SCL 0.055 0.140 0.095 0.004
linear k− ε, UMIST-N 0.055 0.141 0.092 0.004

realizable k− ε, SCL (*) 0.048 0.139 0.103 0.004
realizable k− ε, UMIST-A (*) 0.049 0.139 0.100 0.005

non-linear k− ε, SCL (*) 0.047 0.105 0.111 0.004
non-linear k− ε, UMIST-A (*) 0.051 0.083 0.114 0.004

Table 7.4: Drag breakdown for the 25◦ Ahmed body. Realizable and non-linear k− ε model results,
marked with an asterisk (*), are taken from Robinson [35].

For example, the pressure-gradient term for the subgrid U -momentum equation is given by:

√
g11

(
g11 ∂P

∂ξ
+g12 ∂P

∂η
+g13 ∂P

∂ζ

)
(7.2)

where ξ and η are the two wall-parallel coordinates, ζ is not parallel to the wall (but is not necessarily

wall-normal) and gi j is the contravariant metric tensor. The pressure distribution across the near-wall

cell is determined by solving the following equation:

∇P · n̂+(∇ ·ρu⊗u) · n̂ = 0 (7.3)

where n̂ is the unit wall-normal vector, u⊗u is the Reynolds stress in vector form. It is recognized

that Equation (7.3) only provides an approximation of ∂P/∂ζ. To resolve accurately the pressure

distribution in the near-wall region would entail the solution of a pressure-correction equation across

the subgrid domain which would drastically increase the computational time (in effect one would be

performing a full low-Reynolds-number model simulation).

To examine whether ∂P/∂ζ is a significant term in the subgrid momentum equations and whether

the above approximation is satisfactory, profiles have been plotted of the near-wall velocity in a region

of the Ahmed body flow where the grid is highly skewed. Figure 7.35 shows the wall-parallel velocity

in five locations around the 90◦ rear corner of the Ahmed body on the centreline (shown in Figure

7.36). The grid in this region has skewed cells of angle 45◦. One can see that the velocity on the

underside of the Ahmed body (profiles A and B on the left of Figure 7.35) increases smoothly from

zero on the wall surface up to a maximum of around 0.8 (where 1.0 is the free-stream velocity). The

velocity in profile C, just around the corner on the base surface, is lower near the wall and further

up the base surface (profiles D and E) the wall-parallel velocity changes sign. Figure 7.37 shows

the distribution of three subgrid pressure-gradient terms:
(√

g11g11∂P/∂ξ
)
,
(√

g11g12∂P/∂η
)

and(√
g11g13∂P/∂ζ

)
, for the corner cell C (for this cell the ξ-direction is aligned to the main Ahmed

body z-axis, the η-direction is aligned to the y-axis and the ζ-direction at angle of 45◦ to the base
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surface, as shown in Figure 7.36). The two wall-parallel components, involving ∂P/∂ξ and ∂P/∂η,

are assumed constant across the subgrid and, as would be expected, the ξ-direction component is far

greater than the transverse η-direction component. The calculated
(√

g11g13∂P/∂ζ
)

profile is non-

uniform, having a maximum near the outer edge of the subgrid domain and decreasing to a quarter

of that value near the wall. Near the outer edge of the cell, the term involving ∂P/∂ζ is nearly three

times as large as the ∂P/∂ξ term.

If the ∂P/∂ζ term is removed from the Ahmed body calculation (by simply setting the term to

zero) and the calculation run on from a pre-converged state for 500 iterations, the velocity profiles

shown in Figure 7.38 are obtained. The principal effect of switching off ∂P/∂ζ is in profile C where

there is a marked increase in the subgrid velocity leading to a large strain-rate at the outer edge of

the subgrid. Interestingly, the main-grid velocity field is practically unchanged by switching off the

subgrid ∂P/∂ζ even though the wall shear stress calculated from the subgrid solution is increased by

approximately 86%. Plots of the overall main-grid flow behaviour, such as those shown in Figures

7.28 and 7.33, are also indistinguishable, meaning that the main-grid domain is little affected by the

∂P/∂ζ term in the subgrid. The reason that the calculation was run for only 500 iterations, rather

than until a fully-converged solution was reached, was that the calculation became unstable when the

∂P/∂ζ term was removed from the subgrid momentum equations8 . This instability was likely to have

been due to the large strain-rate observed at the outer edge of the subgrid domain which caused large

production and dissipation source terms in the subgrid k and ε̃ equations which, in turn, affected the

main-grid solution.

To summarize the above discussion, the subgrid ∂P/∂ζ term has been shown to have a significant

effect on the subgrid velocity profile in a region of the flow where the cells are highly skewed and there

are large pressure gradients. In the particular region of the Ahmed flow which has been examined,

the calculated subgrid velocity profile has little effect on the near-wall main-grid velocity. This would

indicate that the approximation of the subgrid ∂P/∂ζ has little influence upon the overall flow field,

although an inaccurate estimation of the subgrid pressure distribution may lead to large subgrid strain-

rates which compromise the stability of the calculation.

7.5 Discussion & Conclusions

It has been shown that it is possible to apply the UMIST-N wall function to a complex three-dimensional

flow involving a non-orthogonal multiblock grid arrangement. The prediction of the 25◦ Ahmed body

flow using the new wall function was shown to be similar to that obtained using a standard log-law

based wall function. This is surprising since the new wall function did predict skewing of the velocity

vector across the near-wall cell, which was anticipated to be influential in the formation of the side-

8Momentum and turbulent kinetic energy residuals oscillated at a level around order-of-magnitude greater than that
previously achieved when the ∂P/∂ζ term was included. The dissipation-rate residuals also increased by approximately
four orders-of-magnitude. Analysis of the velocity and turbulence parameters in the regions of maximum residual (located
near the 90◦ rear corner of the Ahmed body) showed small changes in the profiles between successive iterations.
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edge vortices over the rear slant. Although the results are therefore slightly disappointing the linear

k− ε model predictions with the UMIST-N wall function are broadly in agreement with the low-Re

linear k−ε model predictions of Leonard et al.9 (both approaches predicted a fully-attached boundary

layer over the rear slant). It appears, following the workshop comparisons, that the turbulence model

used in the main-grid region of the flow domain has a greater influence on mode of the flow on the

rear slant than the particular near-wall treatment employed. It would be interesting to examine this

issue further, perhaps by making direct comparisons between a low-Re k−ω model (which predicted

the separation bubble on the rear slant in almost perfect agreement with the experiments) and a k−ω
model with different wall functions.

In the impinging-jet and spinning-disc flows considered in earlier chapters, the computing times

of the UMIST-N wall function calculations were compared against the times for full low-Re model

and standard log-law-based wall function calculations. A low-Re model simulation of the Ahmed

body flow was not undertaken as part of the present study due to the computing requirements. Both

the SCL and UMIST-N wall function calculations have been started from previous simulations, rather

than from scratch, making it difficult to compare total CPU requirements. One can, however, compare

computing times for the SCL and UMIST-N treatments on a per-iteration basis, as shown in Table

7.5. Ahmed body calculations with the UMIST-N wall function took around 24% greater time per

iteration than those with the SCL wall function. This compares to an increase of around 60% for the

impinging-jet flow and 100% for the spinning-disc flow.

Wall Function CPU Time for 100 Iterations (s) Relative CPU time

SCL 1022 1
UMIST-N 1268 1.24

Table 7.5: Computing times for 100 iterations of the Ahmed body calculation using the linear k− ε
model with the log-law-based Simplified Chieng & Launder (SCL) wall function and the new UMIST-
N wall function. Computations were carried out on a 2.2GHz Pentium 4 processor with the same levels
of compiler optimization.

One of the features of the new wall function which only becomes significant in a non-orthogonal

grid arrangement, namely the appearance ∂P/∂ζ in the subgrid momentum equations, has been shown

to be an important term in the subgrid momentum equations in regions where the cells are highly

skewed and there are large pressure gradients. The term was shown to have little or no effect on

the overall main-grid solution although stability of the calculation was compromised if the term was

neglected from the subgrid momentum equations. This indicates that the safest strategy is to use a

grid which does not contain highly skewed subgrid cells.

In future simulations of the Ahmed body flow it would be interesting to examine the effect of

using entrainment conditions on the top and side edges of the flow domain where, in the present cal-

culations, symmetry conditions have been imposed. Menter noted at the 2002 ERCOFTAC workshop

9The results of Leonard et al. were presented at the 2002 ERCOFTAC Workshop on Refined Turbulence Modelling (see
Footnote 3 on Page 132).
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that specifying symmetry conditions instead of the more realistic entrainment conditions caused an

increase in the velocity of the flow around the body due to the blockage effect which led to an increase

in the predicted drag coefficient (an effect which was proportional to the square of the blockage ratio).

The choice of boundary conditions was not however reported to affect the flow structure on the rear

slant.



Chapter 8

Discussion and Conclusions

8.1 Preliminary Remarks

The aim of this thesis was to develop a computationally efficient wall function which can predict

complex turbulent flows with an accuracy similar to full low-Reynolds-number model treatments,

which involve the costly integration of transport equations all the way across the viscous sublayer

to the wall. To assess the performance of the new wall function, three challenging test-cases were

selected: an impinging jet, a spinning disc and a three-dimensional “Ahmed” car body flow. Each of

these test cases provides challenges for the wall treatment. Near the stagnation point in the impinging

jet flow, the turbulence energy is generated primarily by normal stresses and convection both normal

and parallel to the wall are significant. The spinning-disc flow involves “natural” transition and the

velocity vector undergoes significant skewing across the near-wall sublayer (a feature which cannot

be captured accurately by standard log-law-based wall functions). The 25◦ Ahmed car body flow was

chosen as an industrially-relevant three-dimensional flow which involves elements of the other two

cases: flow impingement on the nose and strong near-wall skewing of the flow over the rear slant,

whilst introducing additional complexities such as the use of a non-orthogonal multiblock grid.

The new wall function, UMIST-N, was presented in detail in Chapter 4. In summary, the wall

function solves boundary-layer-type transport equations for wall-parallel velocity, turbulence parame-

ters (such as k and ε̃), and temperature across an embedded grid situated within the near-wall cell. The

wall function transport equations include terms for convection both parallel and normal to the wall,

diffusion normal to the wall, pressure gradient and sources. The wall-normal velocity is obtained

from continuity, with some additional scaling to allow for consistent boundary conditions. Since the

wall function decouples the solution of the near-wall flow from that in the main-grid domain and a

pressure-correction equation is not solved across the subgrid, the new wall function does not suffer

from the slow convergence problems of a full low-Reynolds-number model treatment. Subgrid values

of velocity, turbulence parameters and temperature are saved at each iteration so the overall storage

requirements of the new wall function are roughly equal to those of a full low-Re model (although

there are some savings since subgrid pressure is not stored and due to the grid arrangement).

145
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The three test-cases were each examined using full low-Re models1, the UMIST-N wall function

and at least one standard log-law-based wall function. Linear and non-linear k− ε models were used

in the impinging jet and spinning-disc flows whilst only linear k − ε results were presented for the

Ahmed body flow. Discussions have already been presented on a case-by-case basis at the end of each

of the flow calculation chapter. It is not intended to go through the same discussions again, but to

highlight the salient points and draw some overall conclusions.

8.2 Conclusions

Impinging Jet Flow

Overall, the UMIST-N wall function predictions of the impinging jet flow were in excellent agreement

with the low-Re model predictions using both linear and non-linear k − ε models. Different wall-

function grid arrangements were tested to assess the sensitivity of the models to the size of the near-

wall cell. The UMIST-N wall function showed practically no sensitivity to the near-wall cell size, in

contrast to the log-law-based wall functions. There was a small discrepancy between the heat transfer

predictions of the low-Re linear k−ε model and the UMIST-N wall function near the stagnation point

in the impinging jet flow, but it was shown that this was due to the coarse wall-function grid providing

an insufficient resolution of the near-wall variation of turbulence parameters. Computing times for the

UMIST-N wall function were approximately 60% higher than those of the log-law-based Chieng &

Launder wall function but an order-of-magnitude less than the low-Re NLEVM calculations.

Spinning “Free” Disc Flow

The near-wall tangential velocity exhibits a logarithmic profile in the fully-turbulent region of the

spinning disc flow whilst the radial velocity increases from zero at the wall to a peak and then decays

with distance from the disc. Standard wall functions which assume a logarithmic velocity profile in

both directions therefore adequately approximate the tangential velocity profile but do not capture

the radial velocity distribution. Traditionally, in order to predict accurately the flow and heat transfer

over the disc, one has been forced to use full low-Re model treatments. The UMIST-N wall function

showed excellent agreement with low-Re model predictions of both the radial and tangential velocity

profiles.

The location of transition from laminar to turbulent flow was not specified in the calculations.

Instead, an initial level of turbulence was left to decay in regions where there was insufficient straining

of the flow field, near the disc axis. It was found that the predicted location of transition was slightly

sensitive to the size of the near-wall cell with the UMIST-N wall function, although the results were

close to those obtained with low-Re models. This sensitivity was shown to be significantly worse with

1with the exception that a low-Re model calculation of the Ahmed body flow was not undertaken due to the large
computing time required.
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standard wall functions, which use a criterion based on the local y+-value to switch from assumed

laminar to turbulent profiles.

Computing times with the UMIST-N wall function were approximately double those of the Chieng

& Launder wall function but still an order-of-magnitude less than low-Re computations.

“Ahmed” Body Flow

The flow around the Ahmed body with a rear slant angle of 25◦ was examined. Experimental measure-

ments have shown that the flow separates at the top edge of the rear slant, reattaches roughly half-way

down the slant and thereafter remains attached due to the presence of strong side-edge vortices. Cap-

turing this behaviour over the rear slant is crucial in obtaining the correct drag predictions.

Using a linear k− ε model, the UMIST-N wall function was shown to give similar flow predic-

tions to those obtained using a standard log-law-based wall function. This was surprising since the

earlier spinning-disc calculations showed that the new wall function was better able to predict highly-

skewed boundary layers and it had been anticipated that this would influence the formation of the

side-edge vortices. Although the results are therefore slightly disappointing, this behaviour is broadly

in agreement with low-Re linear k− ε model predictions presented by other researchers at a recent

ERCOFTAC workshop on the Ahmed body flow. Computing times with the UMIST-N wall function

were around 24% higher per iteration than those of the standard wall function.

General Comments

In terms of the aims of this thesis, it has been demonstrated that the new wall function provides flow

predictions in good agreement with full low-Reynolds-number model simulations. There is a modest

computational overhead in switching from a standard log-law-based wall functions to the UMIST-N

but in both the impinging jet and spinning disc cases it was shown that computing times were still an

order-of-magnitude less than a full low-Re calculation. In the Introduction a number of features of the

“ideal” wall function were discussed under the headings of flexibility, validation and robustness. The

UMIST-N wall function has been applied with two turbulence models, a linear and a non-linear k− ε
model. In principle, it can be used with any turbulence closure and a step-by-step derivation has been

included for both Cartesian and non-orthogonal grid arrangements to aid further developments. The

wall function can be modified relatively easily to work as a stand-alone parabolic solver and various

other means of testing and validating the code were discussed in Section 4.4. In the impinging jet and

spinning disc flows, the UMIST-N wall function was found to converge in slightly fewer iterations

than the Chieng & Launder wall function and was not found to cause problems with robustness of the

overall flow calculation. However, there were some unresolved issues with the use of the NLEVM

and UMIST-N wall function in the Ahmed body flow which are discussed below.
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8.3 Further Work

Ahmed Body Simulations

Simulations of the Ahmed body flow using the UMIST-N wall function with the non-linear k − ε
model were numerical unstable. Various possible causes were investigated. Using the NLEVM across

the wall-function region and a linear k− ε model throughout the main-grid flow domain gave a stable

solution; similarly, using a linear model across the subgrid and in a few cells near the wall whilst using

the NLEVM elsewhere gave a stable solution. It was only when the NLEVM was used in the subgrid

and the main-grid region close to the wall that stability problems arose.

In previous simulations of the Ahmed body flow using the NLEVM, Robinson [35] found that

there was some transient motion in the wake of the Ahmed body which prevented the steady-state

solution converging. Some preliminary time-dependent calculations were carried out with the UMIST-

N wall function which seemed to indicate that this was not the cause of the stability problems.

There are known stability issues with the NLEVM in flows involving strong strain-rates. A feed-

back loop exists due to the strain-dependent cµ term: an overpredicted strain-rate leads to a reduced

cµ, which in turn reduces the eddy-viscosity and leads to an increased strain-rate, which then reduces

cµ etc. A number of recent modifications by Craft et al. [67] have improved the stability of the model.

These were tested but did not provide any improvement for the present test case. It seems unlikely

that this is the root cause of the stability problems, however, since Robinson was able to obtain stable

solutions for the Ahmed body flow using the same model with a log-law-based wall function.

It was remarked earlier that an incorrect prediction of the pressure distribution across the subgrid

with the linear k− ε model could cause numerical instability, due to large strain-rates arising at the

outer boundary of the subgrid. The calculation for the subgrid pressure gradient (∂P/∂ζ) is based on

local gradients of the Reynolds stress. It is therefore possible that there was some feedback between

the subgrid Reynolds stress distribution generated by the NLEVM and the calculation for ∂P/∂ζ which

introduced numerical instability. However, a stable solution could be obtained using the NLEVM

across the subgrid and linear model in the main-grid, which would indicate that this too was not the

cause of the stability problem.

Clearly, it is necessary to investigate the possible causes of the numerical instability and find a

solution. The Ahmed body flow is large and complex and it would be easier to investigate the causes

of the problem in simpler geometries which contain similar flow features. Backward facing step and

diffuser flows could be examined using grids with cells skewed at 45◦ to emulate the flow over the

rear of the Ahmed body.

Internal Corners

The Parabolic Sub-Layer (PSL) treatment of Iacovides & Launder [59] shares some common features

with the UMIST-N wall function. Neither of the approaches solves a pressure-correction equation

within the near-wall region and instead the wall-normal velocity is determined from continuity. The
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PSL treatment was found to be numerically unstable in flows involving internal corners where the

wall-normal velocity in the corner cell was calculated from the wall-parallel velocity, which was

itself calculated from continuity. These problems are not expected to occur with the UMIST-N wall

function, since it does not directly calculate the main-grid velocities from continuity. However, this

should be confirmed by tests with the UMIST-N wall function in flows involving internal corners.



Appendix A

RANS Equations for Axisymmetric

Swirling Flow

The RANS equations for steady, incompressible flow are presented below in cylindrical-polar co-

ordinates, using a stationary reference frame. The velocity components in the radial (r), axial (y)

and tangential (φ) directions are denoted U , V and W respectively. Convection terms are shown in

conservative form. For confirmation of these equations see Owen & Wilson [112] or Morse [124].

Continuity

1
r

∂
∂r

(rU)+
∂V
∂y

= 0 (A.1)

Radial Momentum, U

∂
∂r

(ρrUU)+
∂
∂y

(ρrUV )−ρW 2 = −r
∂P
∂r

+
∂
∂r

(
2rµ

∂U
∂r

−ρru2

)

+
∂
∂y

[
rµ

(
∂U
∂y

+
∂V
∂r

)
−ρruv

]

−
(

2µ
U
r
−ρw2

)
(A.2)

Axial Momentum, V

∂
∂r

(ρrUV )+
∂
∂y

(ρrVV ) = −r
∂P
∂y

+
∂
∂r

[
rµ

(
∂V
∂r

+
∂U
∂y

)
−ρruv

]

+
∂
∂y

(
2rµ

∂V
∂y

−ρrv2

)
(A.3)
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Tangential Momentum, W

∂
∂r

(ρrUW )+
∂
∂y

(ρrVW )+ρUW =
∂
∂r

(
rµ

∂W
∂r

−ρruw

)
+

∂
∂y

(
rµ

∂W
∂y

−ρrvw

)

−
(

µW
r

+W
∂µ
∂r

+ρuw

)
(A.4)

A.1 Linear k− ε Model

Reynolds Stress, uiu j

In a linear k− ε model the Reynolds stresses, uiu j, are as follows:

−ρu2 = 2µt
∂U
∂r

− 2
3

ρk (A.5)

−ρv2 = 2µt
∂V
∂y

− 2
3

ρk (A.6)

−ρw2 = 2µt
U
r
− 2

3
ρk (A.7)

−ρuv = µt

(
∂U
∂y

+
∂V
∂r

)
(A.8)

−ρuw = µt r
∂
∂r

(
W
r

)
= µt

(
∂W
∂r

− W
r

)
(A.9)

−ρvw = µt
∂W
∂y

(A.10)

Substituting these into the above RANS equations:

Radial Momentum, U

∂
∂r

(ρrUU)+
∂
∂y

(ρrUV )−ρW 2 = −r
∂P
∂r

− ∂
∂r

(
2
3

rρk

)
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∂
∂r

[
2r (µ+µt)

∂U
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∂
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[
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+
∂V
∂r

)]

−2(µ+µt)
U
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+
2
3

ρk (A.11)

Here the 2k/3 term resulting from the w2 Reynolds stress cancels with part of the expanded u2 term:

− ∂
∂r

(
2
3

rρk

)
+

2
3

ρk = −r
∂
∂r

(
2
3

ρk

)
− 2

3
ρk
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+
2
3

ρk
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∂
∂r

(
2
3

ρk

)
(A.12)
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The remaining gradient of 2k/3 is included in the pressure gradient term when the transport equations

are coded. The final form of the radial-momentum transport equation is then:

∂
∂r

(ρrUU)+
∂
∂y

(ρrUV ) = −r
∂P′

∂r
+

∂
∂r

(
2rµe f f

∂U
∂r

)

+
∂
∂y

[
rµe f f

(
∂U
∂y

+
∂V
∂r

)]
−2µe f f

U
r

+ρW 2 (A.13)

where µe f f = µ+µt and P′ = P+2ρk/3.

Axial Momentum, V

Following a similar approach outlined above, the axial momentum expression can be written:

∂
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(A.14)

Tangential Momentum, W
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This can be rearranged as follows:

∂
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Kinetic energy, k
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where the production rate, Pk, is given by:

Pk = µt Si j
∂Ui
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(A.18)

and the total dissipation rate, ε, comprising of isotropic dissipation rate ( ε̃) and the value of dissipation

rate at the wall, is given by:

ε = ε̃+2ν
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∂
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 (A.19)

Dissipation Rate, ε̃
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where the gradient production term, Pε3, is given by:
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The whole of the above expression has been used for the work included in this thesis. Morse [124]

and Launder & Sharma [13] used a simplified form of the above Pε3 expression.

A.2 Non-Linear k− ε Model

In axisymmetric swirling flows the strain-rate and vorticity tensors appearing in the NLEVM are given

by:
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and:
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Appendix B

Introduction to Curvilinear Coordinates

B.1 Definition of a Vector

A vector, v, in three-dimensional space is represented in the most general form as the summation of

three components, v1, v2 and v3, aligned with three “base” vectors, as follows:

v = v1g1 + v2g2 + v3g3 =
3

∑
i=1

vigi (B.1)

where bold typeface denotes vector quantities and the base vectors, gi, can be non-orthogonal and do

not have to be unit vectors as long as they are non-coplanar. The subscript i indicates a covariant

quantity and the superscript i indicates a contravariant quantity, hence the above formula describes

vector v as three contravariant components of the covariant base vectors. The Einstein summation

convention only applies where one dummy index i is subscript and the other is superscript (summation

does not apply over a repeated subscript i, so that for instance the metric tensor g ii, discussed later,

has 3 separate components).

B.2 Transformation Properties of Covariant and Contravariant Ten-

sors

The subject of covariant and contravariant tensors is often introduced in tensor analysis text books by

defining the behaviour of the two under transformation. The gradient of a scalar, φ, is given by the

following expression in general non-orthogonal coordinates (ξ,η,ζ):

∇φ =
∂φ
∂ξ

g1 +
∂φ
∂η

g2 +
∂φ
∂ζ

g2 =
∂φ
∂ξi g

i (B.2)
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If one defines another coordinate system
(

ξ,η,ζ
)

then components of the gradient can be expressed

using the chain-rule:
∂φ
∂ξi

=
∂ξ j

∂ξi

∂φ
∂ξ j (B.3)

which can be written:

Ai = a j
i A j (B.4)

where:

Ai =
∂φ
∂ξ j

a j
i =

∂ξ j

∂ξi
A j =

∂φ
∂ξ j (B.5)

Tensors that satisfy this transformation are called covariant tensors and have lowered subscripts, as in

Ai.

To examine the transformation properties of a contravariant tensor, the vector dr is considered, as

follows:

dr = dξg1 +dηg2 +dζg3 (B.6)

As before, if one defines another coordinate system
(

ξ,η,ζ
)

then components of the vector can be

expressed using the chain-rule:

dξi =
∂ξi

∂ξ j dξ j (B.7)

This can be written:

Ai = bi
jA

j (B.8)

where:

Ai ≡ dξi bi
j =

∂ξi

∂ξ j
A j = dξ j (B.9)

Tensors that transform according to Equation (B.8) are termed contravariant, and have raised indices.

B.3 Covariant and Contravariant Base Vectors, gi and gi

One can define a point in space by the position vector, r, using the familiar Cartesian coordinates, as

follows:

r = xî+ yĵ+ zk̂

= x1e1 + x2e2 + x3e3

= xiei (B.10)

and, equally, one can define the unit vector in the x-direction, î, as follows:

î =
∂r
∂x

(B.11)
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or, more generally:

ei =
∂r
∂xi (B.12)

The same point in space can be defined using a more general coordinate system:

r = ξg1 +ηg2 +ζg3

= ξ1g1 +ξ2g2 +ξ3g3

= ξigi (B.13)

where:

gi =
∂r
∂ξi (B.14)

Equations (B.10) and (B.13) are equivalent. Using the chain rule, one can therefore express the

covariant general base vectors gi in terms of the covariant Cartesian base vectors, ei, as follows:

∂r
∂xi =

∂r
∂ξ j

∂ξ j

∂xi

ei =
∂ξ j

∂xi g j (B.15)

and likewise:

∂r
∂ξi =

∂r
∂x j

∂x j

∂ξi

gi =
∂x j

∂ξi e j (B.16)

The covariant and contravariant base vectors are defined such that the scalar product of the covari-

ant and contravariant base vectors is unity, i.e.:

gi ·g j = 1 if i = j

= 0 if i 6= j

or:

gi ·g j = δ j
i (B.17)

where δ j
i

(
≡ δi j ≡ δi j

)
is the Kronecker delta.

In Equation (B.13), the vector r was expressed in terms of the covariant base vector g i. In a similar

way, vector r can be written in terms of the contravariant base vector gi:

r = ξigi (B.18)
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where, following a similar analysis to that given for Equation (B.16):

∂r
∂ξi

=
∂r
∂x j

∂x j

∂ξi
(B.19)

and since gi = ∂r/∂ξi and e j = ∂r/∂x j , the contravariant base vector is given by:

gi =
∂x j

∂ξi
e j (B.20)

One can obtain the covariant and contravariant components from the scalar product of the vector,

r, and the corresponding base vectors (gi or gi), as follows:

r ·gi = ξ jg j ·gi = ξ jδ
j
i = ξi (B.21)

r ·gi = ξ jg j ·gi = ξ jδi
j = ξi (B.22)

where δ j
i has substitution operator properties (i.e. it changes the component ξ j to ξi, or from ξ j to

ξi). Comparing Equations (B.18) and (B.21) one can also see that if the base vector is taken from the

right-hand-side to the left-hand-side of Equation (B.18), the superscript g i becomes subscript gi.

There is an alternative method to obtaining the contravariant base vector g i as a function of e j to

that shown above. Returning to Equation (B.15), it was shown that:

ek =
∂ξ j

∂xk g j (B.23)

Taking the scalar product of both sides of this equation with gi:

ek ·gi =
∂ξ j

∂xk g j ·gi =
∂ξ j

∂xk δi
j =

∂ξi

∂xk (B.24)

Now, assuming that the contravariant base vector gi can be obtained from e j using a linear combination

of factors αi
j:

gi = αi
1e1 +αi

2e2 +αi
3e3 = αi

je
j (B.25)

and taking the scalar product of both sides of this with ek:

gi · ek = αi
je

j · ek = αi
jδ

j
k = αi

k (B.26)

where
(
gi · ek = ∂ξi/∂xk

)
from Equation (B.24) and:

αi
j =

∂ξi

∂x j (B.27)
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Finally, from Equation (B.25), one obtains:

gi =
∂ξi

∂x j e j (B.28)

which is the same result as Equation (B.20).

The vector product (g2 ×g3) has magnitude equal to the area of the rectangle1 with sides g2 and

g3, with direction n̂ normal to both g2 and g3. The scalar product (g1 · n̂) is equivalent to a distance in

the normal direction, thus the volume of the parallelepiped spanned by vectors g1, g2 and g3 is given

by:

∆Vol = g1 · (g2 ×g3) (B.30)

The contravariant base vectors also satisfy:

g1 =
1

∆Vol
(g2 ×g3) g2 =

1
∆Vol

(g3 ×g1) g3 =
1

∆Vol
(g1 ×g2) (B.31)

and similarly the covariant base vectors satisfy:

g1 =
1

∆Vol′
(
g2 ×g3) g2 =

1
∆Vol′

(
g3 ×g1) g3 =

1
∆Vol′

(
g1 ×g2) (B.32)

where ∆Vol ′ = g1 ·
(
g2 ×g3

)
represents the volume of the parallelepiped spanned by the contravariant

base vectors g1, g2and g3.

It is useful to note at this point that the covariant and contravariant rectangular Cartesian base vec-

tors are identical, em ≡ em. This is partly why covariant and contravariant tensors are not mentioned in

most fluid mechanics text books which only deal with Cartesian tensors. The equivalence of covariant

and contravariant Cartesian tensors is demonstrated by:

g1 =
1

∆Vol
(g2 ×g3) (B.33)

which states that the contravariant g1 vector is perpendicular to the plane defined by the two covariant

vectors, g2 and g3. In Cartesian coordinates there is no distinction between g1 and g1 since the k̂

vector is orthogonal to the plane defined by the î and ĵ vectors (i.e. the g1 vector is perpendicular to

the plane defined by g2 and g3).

1The vector product is defined as:
(g2 ×g3) = (|g2| |g3|sinθ) n̂ (B.29)

where n̂ is the unit normal to vectors g2 and g3 and θ is the angle between the two g2 and g3 vectors. Since the area of a
triangle with sides g2 and g3 is determined from (1/2×base×height) which is equivalent to (1/2×|g2|× |g3|sinθ), the
magnitude of the cross product must be equal to the area of the rectangle with sides g2 and g3 (i.e. two triangles).
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B.4 The Jacobian Matrix, [J]

It has previously been shown (Equations B.16 and B.28) that the covariant and contravariant base

vectors, gi and gi, can be expressed in terms of the Cartesian base vectors, e j or e j , as follows:

gi =
∂x j

∂ξi e j (B.34)

gi =
∂ξi

∂x j e j (B.35)

The Jacobian matrix, [J], is defined as the matrix of coefficients appearing in Equation (B.34):

[J] =
∂x j

∂ξi =




xξ xη xζ

yξ yη yζ

zξ zη zζ


 (B.36)

where, for example, xξ ≡ ∂x/∂ξ and all components are contravariant, i.e.:

x ≡ x1

y ≡ x2

z ≡ x3

ξ ≡ ξ1

η ≡ ξ2

ζ ≡ ξ3

B.5 Determinant of the Jacobian Matrix, J

The Jacobian, J, is defined as the determinant of the Jacobian matrix:

J = det [J] = xξ
(
yηzζ − yζzη

)
− xη

(
yξzζ − yζzξ

)
+ xζ

(
yξzη − yηzξ

)
(B.37)

It was noted earlier that the base vectors used to describe vector r in three-dimensional space should

not be coplanar. It was also shown that the volume of the parallelepiped spanned by the base vectors

g1, g2 and g3 is given by:

∆Vol = g1 · (g2 ×g3) (B.38)
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Using Equation (B.16), the vector product of g2 and g3 at a point in space is given by:

g2 ×g3 =

∣∣∣∣∣∣∣

î ĵ k̂

xη yη zη

xζ yζ zζ

∣∣∣∣∣∣∣

= î
(
yηzζ − zηyζ

)
− ĵ
(
xηzζ − zηxζ

)
+ k̂

(
xηyζ − yηxζ

)
(B.39)

and the volume is given by:

∆Vol = g1 · (g2 ×g3)

= xξ
(
yηzζ − zηyζ

)
− yξ

(
xηzζ − zηxζ

)
+ zξ

(
xηyζ − yηxζ

)
(B.40)

This can be rearranged to give:

∆Vol = xξ
(
yηzζ − yζzη

)
− xη

(
yξzζ − yζzξ

)
+ xζ

(
yξzη − yηzξ

)
(B.41)

Since Equations (B.37) and (B.41) are identical, the Jacobian, J, is equivalent to the cell volume,

∆Vol. Therefore, if the three base vectors are non-coplanar, J 6= 0.

B.6 Inverse of the Jacobian Matrix, [J]−1

Taking the scalar product of Equation (B.34) and (B.35):

gi ·gk =
∂x j

∂ξi e j ·
∂ξk

∂xm em (B.42)

and since
(
gi ·gk = δk

i

)
and

(
e j · em = δm

j

)
:

δk
i =

∂x j

∂ξi

∂ξk

∂xm δm
j

1 =
∂x j

∂ξi

∂ξi

∂x j (B.43)

Therefore, if the Jacobian matrix is represented by
(
∂x j/∂ξi

)
then the inverse of the Jacobian must be

given by
(
∂ξi/∂x j

)
.
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The inverse of the Jacobian matrix is found from:

[J]−1 =
∂ξi

∂x j =




ξx ξy ξz

ηx ηy ηz

ζx ζy ζz


=

1
J

[cof (J)]T (B.44)

=
1
J




(
yηzζ − yζzη

)
−
(
xηzζ − xζzη

) (
xηyζ − xζyη

)

−
(
yξzζ − yζzξ

) (
xξzζ − xζzξ

)
−
(
xξyζ − xζyξ

)
(
yξzη − yηzξ

)
−
(
xξzη − xηzξ

) (
xξyη − xηyξ

)


 (B.45)

where, from the definition of the inverse of a matrix, [cof (J)]T is the transpose of the matrix of

cofactors of the Jacobian matrix (or adjoint matrix, adj [J]).

B.7 Covariant Metric Tensor, gi j

The scalar product of vector r = ξ jg j with covariant base vector gi is as follows:

r ·gi =
(
ξ jg j

)
·gi = ξ j (g j ·gi) (B.46)

The scalar product of two covariant base vectors (gi ·g j) is termed the covariant “metric tensor”, gi j .

Due to the symmetry of the scalar product, the metric tensor is symmetrical:

gi j = gi ·g j = g j ·gi = g ji (B.47)

The action of the covariant metric tensor gi j is often referred to as “lowering the index”, where scaling

a contravariant component ξ j with the metric tensor gi j effectively lowers the index to give a covariant

component ξi:

ξi = gi jξ j (B.48)

The above equation can be derived by considering the scalar product of vector r and g i, assuming the

vector r to be given by ξ jg j:

r ·gi =
(
ξ jg j) ·gi = ξ jδ j

i = ξi (B.49)

which is equivalent to Equation (B.46):

r ·gi = ξ jgi j (B.50)

Using Equation (B.34), the metric tensor can be written:

gi j = gi ·g j =
∂xk

∂ξi ek ·
∂xm

∂ξ j em (B.51)
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and, since ek and em are Cartesian base vectors (ek · em = δkm):

gi j =
∂xk

∂ξi

∂xm

∂ξ j δkm

=
3

∑
k=1

∂xk

∂ξi

∂xk

∂ξ j

=
∂x
∂ξi

∂x
∂ξ j

+
∂y
∂ξi

∂y
∂ξ j

+
∂z
∂ξi

∂z
∂ξ j

(B.52)

Using this definition of the covariant metric tensor, and Equation (B.28), one can also show that g i j

is capable of lowering the index of a vector. The product of the metric gi j and the contravariant base

vector g j can be expanded as follows:

gi jg j =

(
∂xk

∂ξi

∂xk

∂ξ j

)(
∂ξ j

∂xm em
)

(B.53)

Simplifying, using the chain-rule:

gi jg j =
∂xk

∂ξi

∂xk

∂xm em

=
∂xk

∂ξi δk
mem (B.54)

and, since the covariant and contravariant rectangular Cartesian base vectors are identical, em = em,

then from Equation (B.16):

gi jg j =
∂xk

∂ξi ek = gi (B.55)

B.8 Determinant of the Covariant Metric Tensor Matrix, g

Using Equation (B.52), the covariant metric tensor matrix can be written:

[gi j] =




g11 g12 g13

g21 g22 g23

g31 g32 g33




=




(
xξxξ + yξyξ + zξzξ

) (
xξxη + yξyη + zξzη

) (
xξxζ + yξyζ + zξzζ

)
(
xηxξ + yηyξ + zηzξ

)
(xηxη + yηyη + zηzη)

(
xηxζ + yηyζ + zηzζ

)
(
xζxξ + yζyξ + zζzξ

) (
xζxη + yζyη + zζzη

) (
xζxζ + yζyζ + zζzζ

)


 (B.56)
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This is equivalent to the product of the Jacobian matrix and the transpose of the Jacobian matrix:

[gi j] = [J]T [J]

=




xξ xη xζ

yξ yη yζ

zξ zη zζ




T 


xξ xη xζ

yξ yη yζ

zξ zη zζ




=




xξ yξ zξ

xη yη zη

xζ yζ zζ







xξ xη xζ

yξ yη yζ

zξ zη zζ


 (B.57)

Using g to denote the determinant of matrix [gi j] one therefore finds that:

g = det (gi j) = det
(
[J]T [J]

)
= det [J]det [J] = J2 (B.58)

where the determinant of a matrix is identical to the determinant of the transpose of the matrix(
det [J] ≡ det [J]T

)
. The above equation can also be written:

J =
√

g (B.59)

B.9 Contravariant Metric Tensor, gi j

Following a similar approach to that adopted in Section B.7, one can take the scalar product of vector

r and contravariant base vector gi, as follows:

r ·gi =
(
ξ jg j) ·gi = ξ j

(
g j ·gi)= ξ jg

i j (B.60)

where gi j is the contravariant metric tensor. Since the scalar product r ·gi can also be written:

r ·gi = ξ jg j ·gi = ξ jδi
j = ξi (B.61)

the actions of the contravariant metric tensor, gi j , is often referred to as “raising the index”:

ξi = gi jξ j (B.62)

where ξ j and ξi are covariant and contravariant components, respectively.

One can show that the product of the covariant and contravariant metric tensors, g ik and g jk, gives

the Kronecker delta, δ j
i , as follows:

gikg jk = (gi ·gk)
(

g j ·gk
)

(B.63)

Using the definition:
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gk =
∂r
∂ξk =

∂xm

∂ξk em (B.64)

and from Equation (B.28):

gk =
∂ξk

∂xn
en (B.65)

one can write the product as:

gikg jk =

(
∂xm

∂ξi

∂xm

∂ξk

)(
∂ξ j

∂xn

∂ξk

∂xn

)
(B.66)

Rearranging these terms:

gikg jk =

(
∂xm

∂ξi

∂ξ j

∂xn

)(
∂xm

∂ξk

∂ξk

∂xn

)
(B.67)

and applying the chain-rule, one obtains:

gikg jk =

(
∂xm

∂ξi

∂ξ j

∂xn

)(
∂xm

∂xn

)

=

(
∂xm

∂ξi

∂ξ j

∂xn

)
δm

n (B.68)

Using the substitution operator properties of δm
n and applying once more the chain-rule:

gikg jk =

(
∂xm

∂ξi

∂ξ j

∂xm

)

=
∂ξ j

∂ξi (B.69)

From the definition of the contravariant metric base vector, gi ·g j = δ j
i , one obtains:

gi ·g j =
∂xk

∂ξi ek ·
∂ξ j

∂xm em =
∂xk

∂ξi

∂ξ j

∂xm δm
k =

∂ξ j

∂ξi = δ j
i (B.70)

and therefore:

gikg jk = δ j
i (B.71)

The matrix of the contravariant metric tensor, gi j , is therefore the inverse of the covariant metric

tensor, gi j , or in terms of matrix manipulation:

gi j =
1
g

Gi j (B.72)
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where g is the determinant and the and Gi j is the adjoint of the gi j matrix, given by:

Gi j = [cof (gi j)]
T

=




(g22g33 −g23g32) −(g12g33 −g13g32) (g12g23 −g13g22)

−(g21g33 −g23g31) (g11g33 −g13g31) −(g11g23 −g13g21)

(g21g32 −g22g31) −(g11g32 −g12g31) (g11g22 −g12g21)


 (B.73)

Since the metric tensor is symmetric (gi j = g ji), the adjoint and the matrix of cofactors of the gi j

matrix are equivalent, i.e. [cof (gi j)]
T = cof (gi j).

B.10 Second Order Tensors, T

Second order tensors are represented in general coordinates as follows:

T = T i jgi ⊗g j = Ti jgi ⊗g j (B.74)

where gi⊗g j and gi⊗g j are, respectively, the tensor product (or dyadic) of the covariant and contravari-

ant base vectors, and T i j and Ti j are, respectively, the contravariant and covariant tensor components.

B.11 Christoffel Symbols of the First Kind, Γi jk

Since the base vectors are generally not constant except in the case of the Cartesian coordinate system,

the derivatives of the base vectors also form vectors which characterize the curvature of the curvilinear

coordinate system. The vector ∂gi/∂ξ j is expressed as a linear combination of the contravariant base

vectors as follows:
∂gi

∂ξ j = Γi j1g1 +Γi j2g2 +Γi j3g3 = Γi jkgk (B.75)

where Γi jk are the “Christoffel symbols of the first kind”. Equation (B.75) can be rearranged to give:

Γi jk =
∂gi

∂ξ j ·gk (B.76)

If the base vector is given by:

gi =
∂r
∂ξi (B.77)

then:
∂gi

∂ξ j =
∂2r

∂ξi∂ξ j =
∂2r

∂ξ j∂ξi (B.78)

and hence the i and j subscripts of the Christoffel symbol of the first kind, Γ i jk , are interchangeable:

Γi jk = Γ jik (B.79)
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Differentiating the covariant metric tensor, gi j , using the product rule and Equations (B.47) and (B.76),

gives:
∂gi j

∂ξk = gi ·
∂g j

∂ξk +
∂gi

∂ξk ·g j = Γ jki +Γik j (B.80)

Since i, j and k are free indices, one can also write this as:

∂g jk

∂ξi = Γki j +Γ jik (B.81)

∂gik

∂ξ j = Γk ji +Γi jk (B.82)

Adding the two equations above, one obtains:

2Γi jk +Γik j +Γ jki =
∂g jk

∂ξi +
∂gik

∂ξ j (B.83)

and, rearranging this, using Equation (B.80):

Γi jk =
1
2

(
∂g jk

∂ξi +
∂gik

∂ξ j −
∂gi j

∂ξk

)
(B.84)

The above equation expresses the Christoffel symbol of the first kind as a function of the derivatives

of the metric tensor.

B.12 Christoffel Symbols of the Second Kind, Γk
i j

The vector ∂gi/∂ξ j can also be expressed as a linear combination of the covariant base vectors as

follows:
∂gi

∂ξ j = Γ1
i jg1 +Γ2

i jg2 +Γ3
i jg3 = Γk

i jgk (B.85)

where the coefficients, Γk
i j , are the “Christoffel symbols of the second kind”2 . Equation (B.85) can be

rearranged in terms of the Christoffel symbol:

Γk
i j =

∂gi

∂ξ j ·g
k (B.86)

Following a similar method to that used above to derive Equation (B.79), it can be shown that the

subscripts of the Christoffel symbol of the second kind are interchangeable, i.e.:

Γk
i j = Γk

ji (B.87)

2In some texts, the Christoffel symbol of the second kind is written:

Γk
i j ≡

{
k

i j

}
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Using the product rule to differentiating Equation (B.17), one obtains:

∂gi

∂ξk ·g
j +gi ·

∂g j

∂ξk = 0 (B.88)

and hence from the definition of the Christoffel symbol of the second kind, Equation (B.86):

Γ j
ik = −∂g j

∂ξk ·gi (B.89)

Previously it was described how the covariant metric tensor, gi j , can lower the index of a tensor. The

raised index of the Christoffel symbol of the second kind can also be lowered by the covariant metric

tensor, as follows:

Γk
i jgkm =

∂gi

∂ξ j ·g
kgkm (B.90)

From Equation (B.55):

Γk
i jgkm =

∂gi

∂ξ j ·gm (B.91)

and from the definition of the Christoffel symbol of the first kind (Equation B.76):

Γk
i jgkm = Γi jm (B.92)

Christoffel symbols of the second kind can therefore be calculated from the metric tensors, using

Equation (B.84), as follows:

Γk
i j =

1
2

gkl
(

∂g jl

∂ξi +
∂gil

∂ξ j −
∂gi j

∂ξl

)
(B.93)

If this expression is contracted, by setting k = i, and has its dummy indices i and l switched around in

the last term, one obtains:

Γi
i j =

1
2

gil ∂g jl

∂ξi
+

1
2

gil ∂gil

∂ξ j
− 1

2
gli ∂gl j

∂ξi

=
1
2

gil ∂gil

∂ξ j (B.94)

where the first and last terms cancel since the metric tensor is symmetric (g il = gli and g jl = gl j).

It is also possible to express Equation (B.94) in terms of the Jacobian J of the metric tensor. The

determinant of the metric tensor matrix [gi j ] is given by:

det [gi j] = g = g11G11 +g12G12 +g13G13 = g11G11 +g21G21 +g31G31 (B.95)

where Gi j is the cofactor matrix. Assuming that the determinant g is a function of the nine components
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of gi j , one can obtain the following partial derivatives:

∂g
∂gi j

= Gi j (B.96)

Using the definition of the inverse of a matrix, Equation (B.72), the above expression can be written:

∂g
∂gi j

= ggi j (B.97)

where g and gi j are, respectively, the determinant and the inverse of the matrix of gi j . Since the

metric tensor is symmetric, the transpose of the metric tensor
(
gi j
)T

= gi j . The term ggi j therefore

represents the matrix of cofactors
(
ggi j = Gi j

)
. The derivative of the determinant, g, with respect to

the curvilinear coordinates can be written, using the chain rule:

∂g
∂ξ j =

∂g
∂gil

∂gil

∂ξ j (B.98)

and substituting Equation (B.97):
∂g
∂ξ j = ggil ∂gil

∂ξ j (B.99)

Equation (B.94) can therefore be written:

Γi
i j =

1
2

gil ∂gil

∂ξ j =
1
2

1
g

∂g
∂ξ j (B.100)

By treating the derivative in Equation (B.100) as a “function of a function” and using the definition of

the Jacobian
(
J2 = g

)
, the Christoffel can be expressed as:

Γi
i j =

1
J

∂J
∂ξ j =

∂
∂ξ j (log J) (B.101)

In Cartesian coordinates the base vectors do not vary with position and therefore all components

of the Christoffel symbols are zero. It follows then that the Christoffel symbols do not constitute

third-order tensors since, if the Christoffel symbols transformed like tensors, their components would

remain zero with respect to any coordinate system, which is not the case.

B.13 Gradient of a Scalar, ∇φ

The gradient of scalar, φ, is written in curvilinear coordinates:

∇φ = g j ∂φ
∂ξ j (B.102)
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The contravariant base vector, g j, can also be written g jkgk, using the “raising of the index” property

of the contravariant metric, g jk . Therefore, the gradient of the scalar can also be written:

∇φ =
∂φ
∂ξ j g jkgk (B.103)

B.14 Covariant Derivatives of Vectors and Tensors

The covariant derivative of a vector
(
v = vigi

)
can be written, using the product rule:

∂v
∂ξ j =

∂
(
vigi
)

∂ξ j

=
∂vi

∂ξ j gi + vi ∂gi

∂ξ j (B.104)

and from the definition of the Christoffel symbol (Equation B.86):

∂v
∂ξ j =

∂vi

∂ξ j gi + vi ∂gi

∂ξ j

=
∂vi

∂ξ j gi + viΓk
i jgk (B.105)

The above derivative is often denoted:
∂v
∂ξ j = ∇ jv

igi (B.106)

or simply:
∂v
∂ξ j = vi

, jgi (B.107)

where:

∇ jv
i = vi

, j =

(
∂vi

∂ξ j + vkΓi
k j

)
(B.108)

The covariant derivative of a second-order tensor
(
T = T i jgi ⊗g j

)
is similarly given by:

∂T
∂ξk =

∂T i j

∂ξk gi ⊗g j +T i j ∂gi

∂ξk ⊗g j +T i jgi ⊗
∂g j

∂ξk

=
∂T i j

∂ξk gi ⊗g j +T i jΓm
ikgm ⊗g j +T i jgi ⊗Γm

jkgm

=

(
∂T i j

∂ξk +T m jΓi
mk +T imΓ j

mk

)
gi ⊗g j (B.109)

This is often denoted:
∂T
∂ξk = ∇kT i jgi ⊗g j (B.110)
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or:
∂T
∂ξk = T i j

,k gi ⊗g j (B.111)

An alternative approach to obtaining the covariant derivative of a second-order tensor is to com-

pare the covariant derivative a scalar which is created from a tensor invariant with the set of its partial

derivatives. For example, to find an expression for the covariant derivative of the covariant tensor Ti j,

if one considers first the covariant derivative of scalar
(
Ti juiv j

)
:

(
Ti ju

iv j)
,k = Ti j,kuivi +Ti j

(
∂ui

∂ξk
+Γi

kmum
)

v j +Ti ju
i
(

∂v j

∂ξk
+Γ j

kmvm
)

(B.112)

The partial derivatives of
(
Ti juiv j

)
are given by:

∂
∂ξk

(
Ti ju

iv j)=
∂Ti j

∂ξk uiv j +Ti j
∂ui

∂ξk v j +Ti ju
i ∂v j

∂ξk (B.113)

For a scalar, the above covariant derivative and the set of partial derivatives are identical. Therefore,

canceling terms and rearranging:

(
Ti j,k +Γm

ikTm j +Γm
jkTim − ∂Ti j

∂ξk

)
uiv j = 0 (B.114)

Finally, canceling the arbitrary terms ui and v j and rearranging once more, one obtains:

Ti j,k =
∂Ti j

∂ξk −Γm
ikTm j −Γm

jkTim (B.115)

B.15 Covariant Derivative of the Metric Tensor

The covariant derivative of the Kronecker delta
(
δi j,k

)
is zero. Since δi j is equivalent to the metric

tensor, gi j , in Cartesian coordinates, the covariant derivative of the metric tensor must also be zero:

gi j,k = 0 (B.116)

This result can be confirmed using the above expression for the covariant derivative of a second-order

tensor (Equation B.115):

gi j,k =
∂gi j

∂ξk −Γm
ikgm j −Γm

jkgim (B.117)

which can also be written using Equation (B.92):

gi j,k =
∂gi j

∂ξk −Γik j −Γ jki (B.118)
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Earlier it was shown that the derivative of the covariant metric tensor g i j with respect to ξk is as

follows:

∂gi j

∂ξk = gi ·
∂g j

∂ξk +
∂gi

∂ξk ·g j

= Γ jki +Γik j (B.119)

Substituting this expression into Equation (B.118), one obtains:

gi j,k = Γ jki +Γik j −Γik j −Γ jki = 0 (B.120)

For the special case where i = j one can also write:

gii,k =
∂gii

∂ξk −2Γm
ikgim = 0 (B.121)

where, following the summation convention, there is no summation on i.

One can also show that gi j
,k = 0, following the same method as described above. The covariant

derivative of gi j is expanded:

gi j
,k =

∂gi j

∂ξk +gm jΓi
mk +gimΓ j

mk (B.122)

and the set of partial derivatives of gi j :

∂gi j

∂ξk = gi · ∂g j

∂ξk +g j · ∂gi

∂ξk (B.123)

Using Equation (B.89), the partial derivatives can be expressed in terms of Christoffel symbols of the

second kind, as follows:

∂gi j

∂ξk = −gi ·gmΓ j
mk −g j ·gmΓi

mk

= −gimΓ j
mk −g jmΓi

mk (B.124)

Finally, substituting Equation (B.124) into (B.122):

gi j
,k = gm jΓi

mk +gimΓ j
mk −gimΓ j

mk −g jmΓi
mk = 0 (B.125)

B.16 Gradient of a Vector, ∇v

The gradient of a vector, v, is written:

grad v = ∇v = g j ∂v
∂ξ j (B.126)
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Expanding the derivative term using Equation (B.108):

∇v =

(
∂vi

∂ξ j + vkΓi
k j

)
gi ⊗g j (B.127)

and using the contravariant metric tensor, g jm, to write the gradient in terms of two covariant base

vectors, one obtains:

∇v =

(
∂vi

∂ξ j + vkΓi
k j

)
g jmgi ⊗gm (B.128)

B.17 Divergence of a Vector, ∇ ·v

The divergence of a vector v is the derivative of the components of vector v in each of the respective

component directions. This is calculated from the scalar (or inner) product of the grad operator (∇)

and the vector v, which can be expressed as:

divv = ∇ ·v = g j · ∂v
∂ξ j = g j ·v, j (B.129)

Since ∇ ·v consists of a scalar product between two vectors, the resulting expression is a scalar quan-

tity. In Cartesian coordinates, where v = uiei, the divergence is simply:

∇ ·v = e j · ∂
(
uiei
)

∂x j

= e j ·
(

ei
∂ui

∂x j
+ui ∂ei

∂x j

)

= δ j
i

∂ui

∂x j

=
∂ui

∂xi =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

(B.130)

where the derivative ∂ei/∂x j is zero, since the Cartesian base vectors do not vary with position.

In general non-orthogonal curvilinear coordinates, where v = vigi, the divergence is given by (see

also Section B.14):

∇ ·v = g j · ∂
(
vigi
)

∂ξ j

= g j ·
(

∂vi

∂ξ j gi + viΓk
i jgk

)

= δ j
i

∂vi

∂ξ j +δ j
kviΓk

i j

=
∂v j

∂ξ j + vkΓ j
k j (B.131)
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Using Equation (B.101) this becomes:

∇ ·v =
∂v j

∂ξ j +
v j

J
∂J
∂ξ j (B.132)

and applying the product rule:

∇ ·v =
∆v j

∆ξ j =
1
J

∂
∂ξ j

(
Jv j) (B.133)

B.18 Divergence of a Tensor, ∇ ·T

The divergence of the second-order tensor T, where T = T i jgi ⊗g j, can be written as follows:

divT = ∇ ·T = gk · ∂T
∂ξk = gk ·T,k (B.134)

From Equation (B.109), this can be expanded:

∇ ·T = gk ·
(

∂T i j

∂ξk +T m jΓi
mk +T imΓ j

mk

)
gi ⊗g j (B.135)

= δk
j

(
∂T i j

∂ξk +T m jΓi
mk +T imΓ j

mk

)
gi (B.136)

=

(
∂T i j

∂ξ j +T m jΓi
m j +T imΓ j

m j

)
gi (B.137)

and simplified, using Equation (B.101):

∇ ·T =

(
∂T i j

∂ξ j +T m jΓi
m j +

T i j

J
∂J
∂ξ j

)
gi (B.138)

=

[
1
J

∂
∂ξ j

(
JT i j)+T m jΓi

m j

]
gi (B.139)

=

(
∆T i j

∆ξ j +T m jΓi
m j

)
gi (B.140)

= ∇ jT
i jgi (B.141)

Note that the divergence of a second-order tensor results in a vector quantity. In going from Equa-

tion (B.135) to Equation (B.136) the base vectors gk and gi were combined into the Kronecker delta(
gk ·gi = δk

i

)
. One could equally have combined gk and g j which would give exactly the same result

with different dummy indices.
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B.19 Summation Convention

It was shown earlier that the divergence of a vector, v, is given by:

∇ ·v = v j
, j =

∂v j

∂ξ j
+ vkΓ j

k j (B.142)

If the vector v is assumed to be obtained from the gradient of a scalar field (v = grad φ), then the

divergence of vector v is given by:

div (grad φ) = ∇ · (∇φ) = ∇2φ (B.143)

where ∇2 is the Laplacian operator. The covariant derivative of the scalar field is given by:

∂φ
∂ξ j = φ, j (B.144)

however, in general coordinate systems, one cannot write:

∇ · (∇φ) = (φ, j), j (B.145)

since summation can only be applied with indices on different levels. Instead, one needs to first

calculate the contravariant component of gradφ, by multiplying with the metric tensor g i j , before

taking the divergence, as follows:

∇ · (∇φ) =
(
gi jφ, j

)
,i

=
∂

∂ξi

(
gi j ∂φ

∂ξ j

)
+Γi

kig
k j ∂φ

∂ξ j (B.146)

This now satisfies the summation convention as indices i, j and k are repeated in upper and lower

positions.

B.20 Physical Components

In the preceding analysis, tensor calculus has been used to express the divergence of first- and second-

order tensors in terms of the covariant and contravariant base vectors, g i and gi. In some coordinate

systems the dimensions of the components of the base vectors are different to those of their parents

(e.g. in cylindrical-polar coordinates (r, y, φ) the velocity component in the direction of the angular

coordinate φ does not have dimensions of length/time). To overcome this shortcoming, unit base
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vectors are used, which are obtained by dividing each base vector by its magnitude3 , i.e.:

g(i) =
1√
gii

gi (B.148)

which can be rearranged to give:

gi =
√

giig(i) (B.149)

where there is no summation over the repeated i index in the above equations. A vector v can therefore

be expressed as follows:

v = vigi = vi√giig(i) (B.150)

Since the vector g(i) is a unit vector, the components
(
vi√gii

)
must have the same dimensions as the

parent vector v. These components are therefore called the “physical” components, denoted v(i). First-

and second-order tensors can be expressed in terms of the physical components as follows:

v = v(i)g(i) = v(i)g
(i) (B.151)

T = T (i j)g(i) ⊗g( j) (B.152)

where:

v(i) =
√

giiv
i (no summation) (B.153)

T (i j) =
√

gii
√

g j jT
i j (no summation) (B.154)

B.21 Key Formulae

A summary of equations derived in the preceding sections is given below:

• Covariant Metric Tensor, gi j:

gi j =
3

∑
k=1

∂xk

∂ξi

∂xk

∂ξ j =
∂x
∂ξi

∂x
∂ξ j +

∂y
∂ξi

∂y
∂ξ j +

∂z
∂ξi

∂z
∂ξ j (B.155)

• Jacobian Matrix, [J]:

[J] =
∂x j

∂ξi =




xξ xη xζ

yξ yη yζ

zξ zη zζ


 (B.156)

3The magnitude of a vector can be found from the scalar product (a ·b = |a| |b|cosθ), so for the covariant base vector
the magnitude is given by: √

gii =
√

gi ·gi =
√

|gi| |gi|cos0 = |gi| (B.147)
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• Jacobian, J:

J = det [J] = xξ
(
yηzζ − yζzη

)
− xη

(
yξzζ − yζzξ

)
+ xζ

(
yξzη − yηzξ

)
(B.157)

• Inverse Jacobian Matrix, [J]−1:

[J]−1 =
∂ξi

∂x j =




ξx ξy ξz

ηx ηy ηz

ζx ζy ζz


=

1
J

[cof (J)]T (B.158)

=
1
J




(
yηzζ − yζzη

)
−
(
xηzζ − xζzη

) (
xηyζ − xζyη

)

−
(
yξzζ − yζzξ

) (
xξzζ − xζzξ

)
−
(
xξyζ − xζyξ

)
(
yξzη − yηzξ

)
−
(
xξzη − xηzξ

) (
xξyη − xηyξ

)


 (B.159)

• Contravariant Metric Tensor, gi j:

gi j =
1
g

Gi j (B.160)

• Determinant of Covariant Metric Tensor Matrix, g:

g = J2 (B.161)

• Adjoint of the Covariant Metric Tensor Matrix, Gi j:

Gi j = [cof (gi j)]
T

=




(g22g33 −g23g32) −(g12g33 −g13g32) (g12g23 −g13g22)

−(g21g33 −g23g31) (g11g33 −g13g31) −(g11g23 −g13g21)

(g21g32 −g22g31) −(g11g32 −g12g31) (g11g22 −g12g21)




(B.162)

• Christoffel Symbol of the Second Kind, Γk
i j:

Γk
i j =

1
2

gkl
(

∂g jl

∂ξi +
∂gil

∂ξ j −
∂gi j

∂ξl

)
(B.163)

• Covariant Derivative, ∇ jvi:

∇ jv
i =

(
∂vi

∂ξ j + vkΓi
k j

)
(B.164)

• Gradient of a Scalar, ∇φ:

∇φ =
∂φ
∂ξ j g jkgk (B.165)
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• Divergence of a Vector, ∇ ·v:

∇ ·v =
∆v j

∆ξ j =
1
J

∂
∂ξ j

(
Jv j) (B.166)

• Divergence of a Tensor, ∇ ·T:

∇ ·T = ∇ jT
i jgi

=

(
∆T i j

∆ξ j +T m jΓi
m j

)
gi

=

[
1
J

∂
∂ξ j

(
JT i j

)
+T m jΓi

m j

]
gi (B.167)

• Physical Vector Component, v(i):

v(i) =
√

giiv
i (no summation) (B.168)

• Physical Tensor Component, T (i j):

T (i j) =
√

gii
√

g j jT
i j (no summation) (B.169)



Appendix C

RANS Equations in Curvilinear

Coordinates

To begin with, the Reynolds-averaged Navier-Stokes (RANS) equations are presented in the familiar

vector and Cartesian tensor forms. Each term in the transport equations is examined to see whether it

complies with the Einstein summation convention for curvilinear coordinates. Then, according to the

rules outlined in Appendix B, the equations are re-written in non-orthogonal curvilinear coordinates

in which velocity vectors follow the coordinate directions. Those equations which are used in the

derivation of the UMIST-N wall function transport equations are shown in boxes to highlight their

significance.

C.1 Vector Form

Continuity

∂ρ
∂t

+∇ · (ρU) = 0 (C.1)

Momentum

∂
∂t

(ρU)+∇ · (ρU⊗U−T) = −∇P (C.2)

Scalar, φ

∂
∂t

(ρφ)+∇ · (ρUφ−q) = Sφ (C.3)

where U and q are, respectively, the mean velocity and scalar-flux vectors, T is the second-order

stress tensor
(
T = τi jgi ⊗g j

)
and P is the mean pressure. The divergence of a vector quantity is a

scalar whilst the divergence of a second-order tensor results in a vector quantity and, therefore, in

179
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3-D space the momentum equation consists of three component equations each multiplied by a base

vector.

C.2 Cartesian Coordinates

The continuity, momentum and scalar transport equations can be written in Cartesian tensors as fol-

lows:

Continuity

∂ρ
∂t

+
∂

∂x j

(
ρU j)= 0 (C.4)

Momentum

∂
∂t

(
ρU i)+ ∂

∂x j

(
ρU iU j − τi j)= − ∂P

∂xi (C.5)

Scalar, φ

∂
∂t

(ρφ)+
∂

∂x j

(
ρφU j − J j

φ

)
= Si

φ (C.6)

Turbulent Kinetic Energy, k

∂
∂t

(ρk)+
∂

∂x j

(
ρkU j − µt

σk

∂k
∂x j

)
= G−ρε (C.7)

Isotropic Dissipation Rate, ε̃

∂
∂t

(ρε̃)+
∂

∂x j

(
ρε̃U j − µt

σε

∂ε̃
∂x j

)
= cε1 f1G

ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (C.8)

where the stress tensor, τi j , is given by:

τi j = µ

(
∂U i

∂x j +
∂U j

∂xi − 2
3

δi j ∂Um

∂xm︸ ︷︷ ︸

)
−ρuiu j (C.9)

In an incompressible flow, the underbraced terms in the above equations disappears since, from con-

tinuity, (∂U m/∂xm = 0). The Reynolds stress
(
−ρuiu j

)
, is expressed, using a linear eddy-viscosity

model:

−ρuiu j = µt

(
∂U i

∂x j +
∂U j

∂xi − 2
3

δi j ∂Um

∂xm︸ ︷︷ ︸

)
− 2

3
δi jρk
︸ ︷︷ ︸

(C.10)

where the two underbraced terms in the above equation arise from the trace condition (where, by

definition, uiui = 2k). The term, J j
φ, representing molecular and turbulent diffusive flux of the time-
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averaged scalar, φ, is given by:

J j
φ = Γφ

∂φ
∂x j −ρu jφ (C.11)

where Γφ is the molecular diffusivity (not to be confused with the Christoffel symbol, Γ i
jk, which has

three indices). The turbulent scalar flux
(
−ρu jφ

)
is calculated using an eddy-diffusivity model:

−ρu jφ =
µt

σφ

∂φ
∂x j (C.12)

The eddy-viscosity, µt , using a k− ε turbulence model, is given by:

µt = ρcµ fµ
k2

ε̃
(C.13)

the production rate of turbulent kinetic energy, G:

G = −ρuiu j ∂U i

∂x j (C.14)

the total dissipation rate, ε:

ε = ε̃+2ν

(
∂k1/2

∂x j

)2

(C.15)

the Yap correction, Yc:

Yc = max






0.83

(
k3/2/ε̃
2.55y

−1

)(
k3/2/ε̃
2.55y

)2
ε̃2

k


 ,0



 (C.16)

and the gradient production term, Pε3:

Pε3 = 2µνt

(
∂2U i

∂x j∂xk

)2

(C.17)

C.3 Summation Convention

The derivatives appearing in the above transport equations in Cartesian coordinates are covariant, in

which case the derivative of, say, φ with respect to x j can be written, ∂φ/∂x j = φ, j , which in itself

is a covariant tensor. Recalling Section B.19, the summation convention in general coordinates is

defined such that summation only occurs where one dummy index is subscript and the other is super-

script (i.e. summation only applies between covariant and contravariant terms). The second covariant

derivative of φ cannot be written (φ, j), j since this would violate the summation convention as both

dummy indices are subscript. In order to change φ, j into a contravariant tensor (effectively raising

index j from subscript to superscript), the product is taken with the contravariant metric tensor g i j
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(which in Cartesian coordinates is equivalent to the Kronecker delta, δ i j). As was shown in Section

B.19, the correct form of the second derivative of φ is thus
(
δ jmφ,m

)
, j where dummy indices j and

m are now repeated as subscript and superscript. Additionally, all of the terms in the each equation

should be consistently covariant or contravariant, for instance, one cannot have a contravariant compo-

nent on one side of the equation equal to a covariant component on the other. In the following sections,

each of the terms in the momentum, kinetic energy and dissipation rate equations are examined to see

whether they comply with the summation convention.

Convection

In the conservative form of convection of momentum, given by:

∂
(
ρU iU j

)

∂x j =
(
ρU iU j)

, j (C.18)

the suffix j appears in the contravariant velocity component and the covariant derivative and therefore

complies with the convention. Likewise, in the non-conservative form of convection:

ρU j ∂U i

∂x j = ρU j (U i)
, j (C.19)

index j is repeated in subscript and superscript. Convection of a scalar quantity (φ, k or ε̃) can also be

shown to agree with the summation convection.

Diffusion

The covariant gradient of the contravariant stress, τi j , is written:

∂τi j

∂x j =
(
τi j
)
, j (C.20)

where j is repeated in subscript and superscript, in agreement with the summation convention.

Stress Tensor, τi j

In the contravariant stress tensor:

τi j = µ

(
∂U i

∂x j +
∂U j

∂xi − 2
3

δi j ∂Um

∂xm

)
−ρuiu j (C.21)

the strain-rate
(
∂U i/∂x j

)
= U i

, j involves a superscript i and subscript j. Since both i and j must be

contravariant (since τi j is fully contravariant), the Kronecker delta, δ jm, is introduced as follows:

∂U i

∂x j = U i
, j = δ jmU i

,m (C.22)
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where i and j now appear as superscripts. Likewise the second strain-rate term in Equation (C.21) is

written:
∂U j

∂xi = U j
,i = δimU j

,m (C.23)

The remaining terms in Equation (C.21) agree with the summation convention. The contravariant

stress tensor, τi j, is therefore given by:

τi j = µ

(
δ jm ∂U i

∂xm +δim ∂U j

∂xm − 2
3

δi j ∂Um

∂xm

)
−ρuiu j (C.24)

Scalar Flux Vector

Following a similar reasoning to that used with the stress tensor, the scalar flux J j
φ, which is modelled

using the eddy-diffusivity hypothesis, is given by:

J j
φ = Γφ

∂φ
∂x j −ρu jφ

=

(
Γφ +

µt

σφ

)
∂φ
∂x j

=

(
Γφ +

µt

σφ

)
φ, j (C.25)

Since the scalar flux should be a contravariant vector, the subscript j must be raised by multiplying

the above expression with δ jm:

J j
φ =

(
Γφ +

µt

σφ

)
δ jm ∂φ

∂xm =

(
Γφ +

µt

σφ

)
δ jmφ,m (C.26)

Pressure Gradient

The pressure gradient in Equation (C.5) is expressed as the covariant derivative of the scalar parameter

P and is therefore itself a covariant tensor,
(
∂P/∂xi = P,i

)
. However, the convection and diffusion

terms, discussed above, both yield contravariant components once summation has been applied over

the dummy indices (i.e. both convection and diffusion terms have superscript i). Therefore, to obtain

agreement with all the components in the momentum equation, it is necessary to to raise the index i

in the pressure gradient:
∂P
∂xi = P,i = δi jP, j (C.27)

Turbulent Kinetic Energy Production, G

The production source term G in the k- and ε̃-equations is given by:

G = −ρuiu j ∂U i

∂x j = −ρuiu jU i
, j (C.28)
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Here the dummy index j is repeated in the subscript and superscript, in agreement with the summation

convention, but index i appears superscript in both instances. Therefore, to satisfy the summation

convention for index i, the covariant Kronecker delta (δim) is introduced, as follows:

G = −ρδimumu jU i
, j (C.29)

where the dummy indices (i, j and m) are all repeated in subscript and superscript.

Total Dissipation Rate, ε

The total dissipation rate, ε, is given by:

ε = ε̃+2ν

(
∂k1/2

∂x j

)2

= ε̃+2ν
(

k1/2
)

, j

(
k1/2

)
, j

(C.30)

This does not agree with the summation convention in general coordinates since both derivatives of

k1/2 are covariant tensors. To make one of the tensors contravariant, the contravariant Kronecker delta(
δ jm
)

is introduced, as follows:

ε = ε̃+2νδ jm
(

k1/2
)

,m

(
k1/2

)
, j

(C.31)

Gradient Production of Dissipation Rate, Pε3

In the low-Reynolds-number model ε̃-equation, the near-wall damping term (Pε3) is given by:

Pε3 = 2µνt

(
∂2U i

∂x j∂xk

)2

= 2µνt
(
U i

, j

)
,k

(
U i

, j

)
,k

(C.32)

In order to obtain the second covariant derivative one must first raise the index of the first derivative

to satisfy the summation convention. The second derivative of the velocity is therefore written:

(
δ jkU i

,k

)
,l

(C.33)

where k is a dummy index. The square of this term requires the introduction of three Kronecker deltas

to comply with the need for repeated raised and lowered indices:

Pε3 = 2µνt δimδ jnδl p (δnoUm
,o

)
,p

(
δ jkU i

,k

)
,l

(C.34)

Unfortunately, to agree with the summation convention, Pε3 now contains eight dummy indices (i, j,

k, l, m, n, o and p).

To summarize the preceding sections, the momentum and scalar transport equations are re-written

below in Cartesian coordinates, where the general coordinate summation convention is observed:
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Momentum

∂
∂t

(
ρU i)+ ∂

∂x j

(
ρU iU j − τi j)= −δi j ∂P

∂x j (C.35)

where the stress tensor is given by:

τi j = µ

(
δ jm ∂U i

∂xm +δim ∂U j

∂xm − 2
3

δi j ∂Um

∂xm

)
−ρuiu j (C.36)

and the Reynolds stress:

−ρuiu j = µt

(
δ jm ∂U i

∂xm +δim ∂U j

∂xm − 2
3

δi j ∂Um

∂xm

)
− 2

3
δi jρk (C.37)

Scalar

∂
∂t

(ρφ)+
∂

∂x j

[
ρφU j −

(
Γφ +

µt

σφ

)
δ jm ∂φ

∂xm

]
= Si

φ (C.38)

Alternative Approach to Summation Convention

An alternative way of examining the summation convention in the above equations is to start from

the vector form of transport equations and convert each term into non-orthogonal curvilinear coordi-

nates directly (omitting the in-between step of Cartesian tensors). For instance, the velocity gradient

component of the stress tensor can be written in vector form:

T = grad v = ∇v (C.39)

This can be converted into generalized tensor form as follows (see also Section B.18)

T = g j ∂
(
vigi
)

∂ξ j (C.40)

The covariant derivative of vector v was shown in Section B.14 to be given by:

∂
(
vigi
)

∂ξ j =

(
∂vi

∂ξ j + vmΓi
m j

)
gi = vi

, jgi (C.41)

hence the expression for the stress tensor becomes:

T = vi
, jgi ⊗g j (C.42)

In the above equation, the stress tensor is expressed in terms of mixed covariant and contravariant base

vectors, gi and g j. In order to obtain agreement with the remaining terms in the momentum equation

one needs to express the stress tensor in terms of the covariant base vectors g i and g j . To do so, the
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contravariant metric g jk is introduced to lower the base vector g j to gk:

T = g jkvi
, jgi ⊗gk (C.43)

Switching around the indices j and k so that the stress tensor is in terms of the base vectors g i and g j,

one obtains:

T = g jkvi
,kgi ⊗g j (C.44)

The components of the above expression are identical to the first term in the strain-rate tensor obtained

in Equation (C.24).

C.4 Transformation Rules

To convert the RANS equations from Cartesian to curvilinear non-orthogonal coordinates, the fol-

lowing set of transformations are applied. These rules are identical to those adopted by Demirdžić et

al. [86] with the exception that here the transformations are to non-physical parameters1 . Expressions

in Cartesian coordinates are shown on the left and equivalent expressions in non-orthogonal curvilin-

ear coordinates on the right. The use of ∇ j and ∆/∆ j symbols is to allow direct comparison with the

equations given by Demirdžić et al. [86].

Scalars

φ → φ (C.45)

∂φ
∂x j →

∂φ
∂ξ j (C.46)

Vectors

vi → vi (C.47)

∂vi

∂x j → ∇ jv
i = vi

, j =
∂vi

∂ξ j + vmΓi
m j (C.48)

∂v j

∂x j
→ ∇ jv

j = v j
, j =

∆v j

∆ξ j
(C.49)

=
1
J

∂
∂ξ j

(
Jv j) (C.50)

1Demirdžić et al. [86] expressed the transformed equations in physical curvilinear coordinates and subsequently inte-
grated the transport equations in physical space (i.e. over the cell dimensions in terms of xi rather than ξi) - for details see
[85]. In the treatment outlined in this document, the integration takes place in ξi-space and therefore the equations are
expressed in terms of the non-physical ξi components.
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Tensors

T i j → T i (C.51)

δi j → gi j δi j → gi j (C.52)

∂T i j

∂x j → ∇ jT
i j = T i j

, j =
∆T i j

∆ξ j +T m jΓi
m j (C.53)

=
∂T i j

∂ξ j +T imΓ j
m j +T m jΓi

m j (C.54)

=
1
J

∂
∂ξ j

(
JT i j)+T m jΓi

m j (C.55)

C.5 Non-Orthogonal Curvilinear Coordinates

Following the transformation rules summarized in Section C.4, the Navier-Stokes equations described

in the preceding section are given below in non-physical non-orthogonal curvilinear coordinates.

Continuity

∂ρ
∂t

+
∆

∆ξ j

(
ρU j)= 0 (C.56)

Momentum

∂
∂t

(
ρU i)+∇ j

(
ρU iU j − τi j)= −gi j ∂P

∂ξ j (C.57)

where the non-physical stress tensor, τi j , is given by:

τi j = µ

(
g jm∇mU i +gim∇mU j − 2

3
gi j ∆Um

∆ξm

)
−ρuiu j (C.58)

and the non-physical Reynolds stress
(
−ρuiu j

)
:

−ρuiu j = µt

(
g jm∇mU i +gim∇mU j − 2

3
gi j ∆Um

∆ξm

)
− 2

3
gi jρk (C.59)

Scalar

∂
∂t

(ρφ)+
∆

∆ξ j

[
ρφU j −

(
Γφ +

µt

σφ

)
g jm ∂φ

∂ξm

]
= Sφ (C.60)

Turbulent Kinetic Energy

∂
∂t

(ρk)+
∆

∆ξ j

[
ρkU j −

(
µ+

µt

σk

)
g jm ∂k

∂ξm

]
= G−ρε (C.61)



188 APPENDIX C. RANS Equations in Curvilinear Coordinates

Isotropic Dissipation Rate

∂
∂t

(ρε̃)+
∆

∆ξ j

[
ρε̃U j −

(
µ+

µt

σε

)
g jm ∂ε̃

∂ξm

]
= cε1 f1G

ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (C.62)

where the generation rate of turbulent kinetic energy, G, is given by:

G = −ρgimu jum∇ jU
i (C.63)

the total dissipation rate at the wall, ε:

ε = ε̃+2νg jm

(
∂k1/2

∂ξm

)(
∂k1/2

∂ξ j

)
(C.64)

and the gradient production of dissipation rate, Pε3:

Pε3 = 2µνt gimg jngl p [∇p (gno∇oU
m)]
[
∇l

(
g jk∇kU

i
)]

(C.65)

C.5.1 Physical Velocity Components

The notion of “physical” components was introduced in Section B.20. If one considers the simple

case of a constant velocity field in plane polar coordinates (r −θ), one can show that the radial and

circumferential velocity components, vr and vθ, are given by:

vr =
∂r
∂t

= v1 = constant (C.66)

vθ = r
∂θ
∂t

= rv2 = constant (C.67)

where v1 and v2 are the non-physical velocity components in the radial and circumferential directions,

respectively. As one approaches the axis of the polar coordinate system (r → 0) the circumferential

non-physical velocity component tends to infinity
(
v2 → ∞

)
. This can introduce serious errors in nu-

merical calculations and, therefore, one must solve for the physical velocity components (in this case,

vr and vθ) [85]. In general curvilinear coordinates, the physical contravariant velocity component,

U (i), is obtained from:

U i =
U (i)

√
gii

(no summation) (C.68)

C.5.2 RANS Equations Using Physical Velocity Vectors

Continuity

The continuity equation can be written with the velocity components in physical form, using Equations

(C.56) and (B.133) :
∂ρ
∂t

+
1
J

∂
∂ξ j

(
J

√
g j j

ρU ( j)
)

= 0 (C.69)
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which is expanded:

∂ρ
∂t

+
1
J

∂
∂ξ

(
J√
g11

ρU

)
+

1
J

∂
∂η

(
J√
g22

ρV

)
+

1
J

∂
∂ζ

(
J√
g33

ρW

)
= 0 (C.70)

where, as above, U , V and W denote the physical velocity components in the direction of the non-

physical base vector components ξ, η and ζ respectively.

Scalar

Using Equations (C.50), (C.60) and (C.68), the scalar transport equation in nonorthogonal curvilinear

coordinates can be written using physical velocity components as follows:

∂
∂t

(ρφ)+
1
J

∂
∂ξ j

(
J

√
g j j

ρφU ( j)
)

=
1
J

∂
∂ξ j

[
J

(
Γφ +

µt

σφ

)
g jm ∂φ

∂ξm

]
+Sφ (C.71)

Momentum

An important difference with the scalar equation is that the divergence of a second-order tensor

(ρU⊗U−T) results in a vector, whereas in the scalar equation the divergence of (ρUφ−q) resulted

in a scalar quantity. Therefore, the momentum equation can be written:

[
∂
∂t

(
ρU i)+∇ j

(
ρU iU j − τi j)+gi j ∂P

∂ξ j

]
gi = 0 (C.72)

The base vector, gi, is written in “physical” form (i.e. as a unit vector) as follows:

gi =
√

giig(i) (C.73)

and the momentum equation becomes:

[
∂
∂t

(
ρU i)+∇ j

(
ρU iU j − τi j)+gi j ∂P

∂ξ j

]√
giig(i) = 0 (C.74)

It is important to keep the
√

gii term in this expression so that the components are in terms of the

physical base vectors. Without the
√

gii term if one converts the equation into cylindrical polar co-

ordinates, the axial, radial and angular (rather than tangential) momentum equations are obtained.

Expanding the covariant derivative term
[
∇ j
(
ρU iU j − τi j

)]
in the above expression using Equation

(C.55) and writing the velocity components in physical form,
(
U i = U (i)/

√
gii
)

, the components of
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the momentum equation are given by:

∂
∂t

(
ρU (i)

)
+
√

gii
1
J

∂
∂ξ j

(
J

√
giig j j

ρU (i)U ( j)
)

︸ ︷︷ ︸
convection

+ρU ( j)U (m)
Γi

m j
√

gii
√

g j jgmm

=


−gi j ∂P

∂ξ j +
1
J

∂
∂ξ j

(
Jτi j)

︸ ︷︷ ︸
di f f usion

+τm jΓi
m j



√

gii (C.75)

where there is no summation on the i index and it is assumed that the grid is not changing over time(
∂√gii/∂t = 0

)
. The first underbraced term, denoted “convection”, in the above expression can be

written in a similar form to that given above for the φ-equation convection, using the quotient rule:

√
gii

1
J

∂
∂ξ j

(
J

√
giig j j

ρU (i)U ( j)
)

=
1
J

∂
∂ξ j

(
J

√
g j j

ρU (i)U ( j)
)
− ρU (i)U ( j)

√
giig j j

∂√gii

∂ξ j (C.76)

where, from Equation (B.121), the expression involving the derivative of the metric tensor can be

written:
∂√gii

∂ξ j =
1
2

1√
gii

∂gii

∂ξ j =
1
2

1√
gii

(
2Γm

i jgim
)

=
Γm

i jgim√
gii

(no summation on i) (C.77)

The second underbraced term in Equation (C.75) can also be expanded, as follows:

√
gii

1
J

∂
∂ξ j

(
Jτi j) =

1
J

∂
∂ξ j

(√
giiJτi j)− τi j ∂√gii

∂ξ j

=
1
J

∂
∂ξ j

(√
giiJτi j)− τi j

Γm
i jgim√

gii
(C.78)

Finally, substituting Equations (C.76), (C.77) and (C.78) into Equation (C.75):

∂
∂t

(
ρU (i)

)
+

1
J

∂
∂ξ j

(
J

√
g j j

ρU (i)U ( j)
)

=
1
J

∂
∂ξ j

(√
giiJτi j)+Si

U (C.79)

where:

Si
U = ρU (i)U ( j)

Γm
i jgim

gii
√

g j j
−ρU ( j)U (m)

Γi
m j
√

gii
√

g j jgmm
−gi j√gii

∂P
∂ξ j

−τi j
Γm

i jgim√
gii

+ τm jΓi
m j
√

gii (C.80)

There is no summation on index i in the above equations.
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Stress Tensor, τi j

The non-physical stress tensor, τi j, for incompressible flow is given by:

τi j = µ
(
g jmU i

,m +gimU j
,m

)
−ρuiu j (C.81)

The six independent stress components are expanded as follows:

τ11 = 2µ
(
g11U,1 +g12U,2 +g13U,3

)
−ρuu (C.82)

τ22 = 2µ
(
g21V,1 +g22V,2 +g23V,3

)
−ρvv (C.83)

τ33 = 2µ
(
g31W,1 +g32W,2 +g33W,3

)
−ρww (C.84)

τ12 = τ21 = µ
(
g21U,1 +g22U,2 +g23U,3

+g11V,1 +g12V,2 +g13V,3
)
−ρuv (C.85)

τ13 = τ31 = µ
(
g31U,1 +g32U,2 +g33U,3

+g11W,1 +g12W,2 +g13W,3
)
−ρuw (C.86)

τ23 = τ32 = µ
(
g31V,1 +g32V,2 +g33V,3

+g21W,1 +g22W,2 +g23W,3
)
−ρvw (C.87)

where strain rates U,i, V,i and W,i are expanded in Section C.5.2. The non-physical components of the

Reynolds stress
(
−ρuiu j

)
are obtained from Equation (C.59) for an incompressible flow, as follows:

−ρuiu j = µt
(
g jmU i

,m +gimU j
,m

)
− 2

3
gi jρk (C.88)

which is expanded:

−ρuu = 2µt
(
g11U,1 +g12U,2 +g13U,3

)
− 2

3
g11ρk (C.89)

−ρvv = 2µt
(
g21V,1 +g22V,2 +g23V,3

)
− 2

3
g22ρk (C.90)

−ρww = 2µt
(
g31W,1 +g32W,2 +g33W,3

)
− 2

3
g33ρk (C.91)
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−ρuv = −ρvu = µt
(
g21U,1 +g22U,2 +g23U,3

+g11V,1 +g12V,2 +g13V,3
)
− 2

3
g12ρk (C.92)

−ρuw = −ρwu = µt
(
g31U,1 +g32U,2 +g33U,3

+g11W,1 +g12W,2 +g13W,3
)
− 2

3
g13ρk (C.93)

−ρvw = −ρwv = µt
(
g31V,1 +g32V,2 +g33V,3

+g21W,1 +g22W,2 +g23W,3
)
− 2

3
g23ρk (C.94)

Velocity Gradient, U i
, j

It was shown above that the strain-rate in Cartesian coordinates
(
∂U i/∂x j

)
transforms into the follow-

ing expression in non-orthogonal curvilinear coordinates:

∂U i

∂x j → ∇ jU
i ≡U i

, j =
∂U i

∂ξ j +UmΓi
m j (C.95)

which is expressed in terms of the physical velocity component U (i):

U i
, j =

∂
∂ξ j

(
U (i)

√
gii

)
+

U (m)

√
gmm

Γi
m j (C.96)

The strain-rate is expanded in 3-D curvilinear coordinates, as follows:

U,1 =
∂

∂ξ

(
U√
g11

)
+

U√
g11

Γ1
11 +

V√
g22

Γ1
21 +

W√
g33

Γ1
31 (C.97)

U,2 =
∂

∂η

(
U√
g11

)
+

U√
g11

Γ1
12 +

V√
g22

Γ1
22 +

W√
g33

Γ1
32 (C.98)

U,3 =
∂

∂ζ

(
U√
g11

)
+

U√
g11

Γ1
13 +

V√
g22

Γ1
23 +

W√
g33

Γ1
33 (C.99)

V,1 =
∂
∂ξ

(
V√
g22

)
+

U√
g11

Γ2
11 +

V√
g22

Γ2
21 +

W√
g33

Γ2
31 (C.100)

V,2 =
∂

∂η

(
V√
g22

)
+

U√
g11

Γ2
12 +

V√
g22

Γ2
22 +

W√
g33

Γ2
32 (C.101)

V,3 =
∂
∂ζ

(
V√
g22

)
+

U√
g11

Γ2
13 +

V√
g22

Γ2
23 +

W√
g33

Γ2
33 (C.102)
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W,1 =
∂

∂ξ

(
W√
g33

)
+

U√
g11

Γ3
11 +

V√
g22

Γ3
21 +

W√
g33

Γ3
31 (C.103)

W,(2) =
∂

∂η

(
W√
g33

)
+

U√
g11

Γ3
12 +

V√
g22

Γ3
22 +

W√
g33

Γ3
32 (C.104)

W,(3) =
∂
∂ζ

(
W√
g33

)
+

U√
g11

Γ3
13 +

V√
g22

Γ3
23 +

W√
g33

Γ3
33 (C.105)

where U (i) = (U,V,W ) denote the physical velocity components and ξi = (ξ,η,ζ) the non-physical

contravariant components of the covariant base vectors gi = (g1,g2,g3).

C.5.3 Examination of Curvilinear Transport Equations

The momentum equation in curvilinear coordinates is given by:

∂
∂t

(
ρU (i)

)
+

1
J

∂
∂ξ j

(
J

√
g j j

ρU (i)U ( j)
)

=
1
J

∂
∂ξ j

(√
giiJτi j)+Si

U (C.106)

where the source term, Si
U , is given by Equation (C.80). The diffusion term in the above equation can

be rearranged so that it follows the same format as the diffusion term in the scalar equation (Equation

C.71). The stress tensor for an incompressible flow, using a linear eddy-viscosity model, can be

written:

τi j = µe f f
(
g jm∇mU i +gim∇mU j)− 2

3
gi jρk

= µe f f

[
g jm
(

∂U i

∂ξm
+Γi

kmU k
)

+gim
(

∂U j

∂ξm
+Γ j

kmU k
)]

− 2
3

gi jρk (C.107)

Substituting the above equation into Equation (C.106), the first component of the diffusion term is

given by:
1
J

∂
∂ξ j

(√
giiJµe f f g jm ∂U i

∂ξm

)
(C.108)

Writing the velocity component U i in terms of the physical component U (i):

1
J

∂
∂ξ j

[
√

giiJµe f f g jm ∂
∂ξm

(
U (i)

√
gii

)]
(C.109)

and expanding the inner-derivative using the quotient rule, one obtains:

1
J

∂
∂ξ j

(
Jµe f f g jm ∂U (i)

∂ξm − J√
gii

µe f f g jmU (i) ∂√gii

∂ξm

)
(C.110)
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The first term in the above Equation is of a similar format to the diffusion term in the scalar equation

diffusion term, which was given as (Equation C.71):

1
J

∂
∂ξ j

[
J

(
Γφ +

µt

σφ

)
g jm ∂φ

∂ξm

]
(C.111)

Checking the Formulation of Convection
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y η

n
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P
w eU

Figure C.1: Cartesian grid cell with mean velocity U parallel to the x-axis

In the preceding section it was shown that the transport equations for momentum and scalar can

be expressed in the form:

∂
∂t

(ρφ)+
1
J

∂
∂ξ j

(
J

√
g j j

ρφU ( j)
)

=
1
J

∂
∂ξ j

(
JΓg jm ∂φ

∂ξm

)
+Sφ (C.112)

where φ represents a scalar parameter or the physical velocity component, Γ denotes the relevant dif-

fusivity and Sφ includes the pressure gradient and curvature source terms in the momentum equation.

To confirm that the convection term in the above equation has been derived correctly, one can show

that by integrating the convection term over a control volume one obtains an expression involving

mass fluxes of parameter φ through the cell faces. The convection of scalar φ in the ξ-direction is

discretized and integrated over a 2-D physical cell volume (see Figure C.1) as follows:�
1
J

∂
∂ξ j

(
J

√
g j j

ρφU ( j)
)

dVol

=
1

∆ξew

[(
J√
g11

ρφU

)

e

−
(

J√
g11

ρφU

)

w

]
∆ξew∆ηns (C.113)

where U is the physical velocity component in the ξ-direction and ∆Vol = J∆ξ∆η is the cell volume

(equivalent to an area in 2-D). Each of the dimensionless distances in computational space has unit

magnitude:

∆ξew = ∆ηns = 1 (C.114)
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the Jacobian is therefore the cell volume:

J = ∆Vol (C.115)

The metric tensor (g11)e is equivalent to square of the physical distance between the nodes P and E:

(g11)e =

(
∂x
∂ξ

)2

+

(
∂y
∂ξ

)2

≈
(

∆xEP

∆ξEP

)2

+

(
∆yEP

∆ξEP

)2

≈ (∆xEP)2 (C.116)

and the convective flux through the eastern cell faces is therefore given by:

(
J√
g11

ρφU

)

e

=

(
∆Vol
∆xEP

ρφU

)

e
= (∆ynsρφU)e (C.117)

where the velocity Ue is normal to the eastern cell face which has area ∆yns. Therefore, (∆ynsρφU)e

represents the mass flux of φ through the eastern cell face.

Checking the Formulation of Diffusion
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x ξ
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Figure C.2: Cartesian and skew grid arrangements with vertical gradient of φ

The second check on the derivation of the curvilinear transport equations involves the diffusion

term. Figure C.2 shows two grid arrangements with equal spacing of grid-lines in both the vertical

y-axis and the horizontal x-axis. In the first grid, the base vectors are aligned to a Cartesian grid (in

which case ξ = x and η = y) but in the second grid the η-axis is skewed from the vertical. A gradient

in φ in the vertical y-direction is imposed and it should be demonstrated that equal diffusion of φ is

obtained using the two different grids (assuming there to be no gradient of φ in the x-direction). The

diffusion term is given by:
1
J

∂
∂ξ j

(
Jg jmΓ

∂φ
∂ξm

)
(C.118)
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In the 2-D case considered here, the diffusion of φ in the vertical direction is calculated from:

1
J

∂
∂η

(
Jg22Γ

∂φ
∂η

)
(C.119)

As before, the Jacobian in 2-D is equivalent to the cell area:

J = Area = ∆xew∆yns = ∆xew∆yNP (C.120)

The contravariant metric tensor, g22, is obtained from matrix inversion:

gi j =
1
g

Gi j =
1
J2

[
co f

(
g11 g12

g21 g22

)]T

=
1
J2

[
g22 −g12

−g21 g11

]
(C.121)

g22 =
1
J2 g11 =

1
J2 (∆xew)2 (C.122)

Substituting Equations (C.120) and (C.122) into (C.119):

1
J

∂
∂η

(
Jg22Γ

∂φ
∂η

)
=

1
J

∂
∂η

(
(∆xew)2

J
Γ

∂φ
∂η

)
(C.123)

=
1
J

∂
∂η

(
∆xew

∆yNP
Γ

∂φ
∂η

)
(C.124)

The diffusive fluxes obtained by discretizing and integrating the above equation are of the form:

ΓA
L

(C.125)

where where A is the cell-face area (equivalent in 2-D to ∆xew) and L is the vertical distance between

adjacent nodes (i.e. ∆yTP). The diffusion of φ in the vertical direction is therefore identical whether a

Cartesian or skew grid is employed.

C.5.4 Non-Conservative Convection

Scalar

Convection of scalar φ in conservative form was shown earlier to be given by:

∂
∂t

(ρφ)+
1
J

∂
∂ξ j

(
J

√
g j j

ρφU ( j)
)

(C.126)
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Expanding this using the product rule:

φ
∂ρ
∂t

+ρ
∂φ
∂t

+
ρU ( j)

√
g j j

∂φ
∂ξ j +

φ
J

∂
∂ξ j

(
J

√
g j j

ρU ( j)
)

(C.127)

Continuity is expressed in curvilinear coordinates:

∂ρ
∂t

+
∆

∆ξ j

(
ρU j) = 0 (C.128)

∂ρ
∂t

+
1
J

∂
∂ξ j

(
J

√
g j j

ρU ( j)
)

= 0 (C.129)

Therefore, Equation (C.127) simplifies to:

ρ
∂φ
∂t

+
ρU ( j)

√
g j j

∂φ
∂ξ j (C.130)

Momentum

Convection of momentum can also be obtained in non-conservative form by expanding the conserva-

tive form and canceling terms using continuity. The conservative convection term was shown earlier

to be given by:
∂
∂t

(
ρU (i)

)
+

1
J

∂
∂ξ j

(
J

√
g j j

ρU (i)U ( j)
)

(C.131)

This can be rearranged to give the non-conservative form:

ρ
∂U (i)

∂t
+

ρU ( j)

√
g j j

∂U (i)

∂ξ j (C.132)

C.5.5 Alternative Approach to Derivation

In the preceding analysis, it has been shown that the convection term in the momentum equations can

be written in curvilinear coordinates, as follows:

(U ·∇)U = ∇ j
(
U iU j)g(i)

=

[
U ( j)

√
g j j

∂U (i)

∂ξ j −U (i)U ( j)
Γm

i jgim

gii
√

g j j
+U ( j)U (m)

Γi
m j
√

gii
√

g j jgmm

]
g(i) (C.133)

The above expression was obtained by converting the Cartesian convection term into curvilinear co-

ordinates. To check that the derivation is correct, one can re-derive the convection term by starting
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directly from the vector form, (U ·∇)U, as follows:

(U ·∇)U = U jg j ·gk ∂
∂ξk

(
U igi

)

= U jδk
j

∂
∂ξk

(
U igi

)

= U j ∂
∂ξ j

(
U igi

)
(C.134)

The covariant derivative of a vector is given by:

∂
∂ξ j

(
U igi

)
=

(
∂U i

∂ξ j +UmΓi
m j

)
gi (C.135)

and therefore we obtain:

(U ·∇)U =

(
U j ∂U i

∂ξ j
+U jUmΓi

m j

)
gi (C.136)

Using physical velocity components U (i), where U i =U (i)/
√

gii, and physical base vectors g(i), where

gi =
√

giig(i):

(U ·∇)U =


√gii

U ( j)

√
g j j

∂
∂ξ j

(
U (i)

√
gii

)

︸ ︷︷ ︸
+U ( j)U (m)

Γi
m j
√

gii
√

g j jgmm


g(i) (C.137)

and using the quotient rule to rearrange the underbraced term:

√
gii

U ( j)

√
g j j

∂
∂ξ j

(
U (i)

√
gii

)
=

U ( j)

√
g j j

∂U (i)

∂ξ j − U (i)U ( j)

√
giig j j

∂√gii

∂ξ j (C.138)

From Equation (C.77), the gradient term, ∂√gii/∂ξ j , can be expressed in terms of the Christoffel

symbols and the convection term becomes:

(U ·∇)U =

[
U ( j)

√
g j j

∂U (i)

∂ξ j −U (i)U ( j)
Γm

i jgim

gii
√

g j j
+U ( j)U (m)

Γi
m j
√

gii
√

g j jgmm

]
g(i) (C.139)

This is identical to the expression which was derived earlier (Equation C.133).



Appendix D

Subgrid Wall Function Transport

Equations

In the subgrid wall function a number of assumptions are made to obtain a set of simplified transport

equations:

• Only the velocity components parallel to the wall are solved.

• Diffusion parallel to the wall is assumed to be negligible in comparison with diffusion normal

to the wall.

• Convection is modelled in non-conservative form.

• The velocity component normal to the wall is obtained from continuity across the subgrid con-

trol volumes, with an additional scaling factor to ensure consistency in the boundary conditions.

For the present purposes of deriving transport equations in non-orthogonal curvilinear coordinates it

is assumed that the wall is in the ξ1 −ξ2 (or ξ−η) plane, and ξ3 ≡ ζ is the wall-normal direction1 . In

this reference frame, only the U - and V -momentum equations are solved across the subgrid and only

diffusion terms involving gradients in the ζ-direction are significant.

D.1 Convection of Momentum

In Appendix C, the convection term in the momentum equation was derived as follows:

(U ·∇)U =

(
U ( j)

√
g j j

∂U (i)

∂ξ j −U (i)U ( j)
Γm

i jgim

gii
√

g j j
+U ( j)U (m)

Γi
m j
√

gii
√

g j jgmm

)
g(i) (D.1)

1In fact, if a skewed grid is employed, the ζ-direction may be at an angle to the wall other than 90o.
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where U (i) represents the physical velocity components aligned to the curvilinear base vectors and the

last two terms, involving Christoffel symbols, arise from the use of a non-uniform grid. The UMIST-

N wall function employs an upwind scheme for discretizing the convection term. However, rather

than use the above expression for convection of momentum, the UMIST-N wall function transforms

the velocity components in the upstream cell from the coordinate system used in the upstream cell

into the coordinate system used in the current cell. To illustrate this, Figure D.1 shows a curved

surface with a wall-parallel U -velocity in the positive ξ-direction and W -velocity in the ζ-direction.

Using an upwind scheme, the wall-parallel convection term for node P is calculated by transforming

the upstream velocity at node W from the coordinate frame used in cell W into the coordinate frame

of cell P. Since the velocity components in the upstream and the current cells are expressed using

identical base vectors (i.e. base vectors do not rotate between the adjacent cells), gradients of the

metric tensors are zero. This means that the Christoffel symbols appearing in Equation D.1 are zero

and the expression simplifies to:

(U ·∇)U =
U ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

g(i) (D.2)

The asterisk is introduced around the velocity gradient term to denote that upstream values of U (i) are

transformed into the coordinate system used in the current cell. In the current version of the UMIST-

N wall function, the upstream velocity is transformed from the upstream covariant base vectors into

Cartesian base vectors and from there into the current cell covariant base vectors. Details of these

transformations which involve the Jacobian and inverse Jacobian matrices are provided in Section

E.8. Reasons for adopting this practice are discussed in Appendix G.

+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'++,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+'+'+,+'+W
ξ

ζ

ξ

ζ

Upstream velocity at node W 
transformed into coordinates
of cell P

P
U

W

U

W

Identical base vectors
used for velocity components
in cell W and cell P 

Figure D.1: Schematic of subgrid cells over a curved wall showing the transformation practice adopted
for convection of momentum.

The subgrid momentum equations in non-orthogonal curvilinear coordinates can therefore be writ-
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ten as follows:

ρ
∂U (i)

∂t
+

ρU ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

=
1
J

∂
∂ξ j

(√
giiJτi j)+Si

U (D.3)

where the source term, Si
U , is given by:

Si
U = −gi j√gii

∂P
′

∂ξ j − τi j
Γm

i jgim√
gii

+ τm jΓi
m j
√

gii (D.4)

There is no summation on the i index in the above equations, the effective pressure is given by P
′
=

P+2ρk/3 and the stress, τi j, is expanded in Section C.5.2.

D.2 U-Momentum

It is assumed that only the wall-normal (or ζ-direction) gradient of the stress tensor is significant

across the subgrid. Writing convection in the form described above, the subgrid momentum equation

becomes:

ρ
∂U (i)

∂t
+

ρU ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

=
1
J

∂
∂ζ
(√

giiJτi3)+Si
U (D.5)

where the source term, Si
U , is given by Equation (D.4). The subgrid stress tensor, τi3 is obtained from

Section C.5.2, where it is assumed that only the wall-normal gradient of the wall-parallel velocity is

significant:

τi3 = µg33U i
,3 −ρuiw (D.6)

Using a linear eddy-viscosity turbulence model, the Reynolds stress is given by:

−ρuiw = µt g
33U i

,3 −
2
3

gi3ρk (D.7)

and the U -momentum diffusion term can then be written, using Equation (C.99):

1
J

∂
∂ζ
(√

giiJτi3)

=
1
J

∂
∂ζ


J

√
g11µe f f g33


 ∂

∂ζ

(
U√
g11

)

︸ ︷︷ ︸
+

U (m)

√
gmm

Γ1
m3






−1
J

∂
∂ζ

(
2
3

ρkg13J
√

g11

)
(D.8)
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where (µe f f = µ+µt). Expanding the underbraced term using the quotient rule:

1
J

∂
∂ζ

[
J
√

g11µe f f g33 ∂
∂ζ

(
U√
g11

)]

=
1
J

∂
∂ζ

(
Jµe f f g33 ∂U

∂ζ
− J√

g11
µe f f g33U

∂√g11

∂ζ

)
(D.9)

where, from Equation (C.77):
∂√g11

∂ζ
=

g1m√
g11

Γm
13 (D.10)

The diffusion term can, therefore, be written:

1
J

∂
∂ζ

(
Jµe f f g33 ∂U

∂ζ

)
+S (D.11)

where:

S =
1
J

∂
∂ζ

[
Jµe f f g33

(
U (m)

√
g11√
gmm

Γ1
m3 −U

g1m

g11
Γm

13

)]

−1
J

∂
∂ζ

(
2
3

ρkg13J
√

g11

)
(D.12)

Finally, the subgrid U -momentum equation can be written:

ρU√
g11

(
∂U
∂ξ

)∗
+

ρV√
g22

(
∂U
∂η

)∗
+

ρW√
g33

(
∂U
∂ζ

)∗
=

1
J

∂
∂ζ

(
Jµe f f g33 ∂U

∂ζ

)
+S1

U (D.13)

where the source term, S1
U , is now given by:

S1
U = −g1 j√g11

∂P
′

∂ξ j − τ1 j
Γm

1 jg1m√
g11

+ τm jΓ1
m j
√

g11

+
1
J

∂
∂ζ

[
Jµe f f g

33
(

U (m)

√
g11√
gmm

Γ1
m3 −U

g1m

g11
Γm

13

)]
(D.14)

and the pressure term includes the isotropic component of the Reynolds stress
(

P
′
= P+2ρk/3

)
.

D.3 V -Momentum

The process described above to derive the subgrid U -momentum equation can be repeated to obtain

the wall-parallel V -momentum equation:

ρU√
g11

(
∂V
∂ξ

)∗
+

ρV√
g22

(
∂V
∂η

)∗
+

ρW√
g33

(
∂V
∂ζ

)∗
=

1
J

∂
∂ζ

(
Jµe f f g33 ∂V

∂ζ

)
+S2

U (D.15)
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where:

S2
U = −g2 j√g22

∂P
′

∂ξ j − τ2 j
Γm

2 jg2m√
g22

+ τm jΓ2
m j
√

g22

+
1
J

∂
∂ζ

[
Jµe f f g33

(
U (m)

√
g22√
gmm

Γ2
m3 −V

g2m

g22
Γm

23

)]
(D.16)

D.4 Scalar, φ

The subgrid steady-flow scalar equation is obtained from Equation (C.71) and (C.130) by neglecting

diffusive fluxes parallel to the wall:

ρU√
g11

∂φ
∂ξ

+
ρV√
g22

∂φ
∂η

+
ρW√

g33

∂φ
∂ζ

=
1
J

∂
∂ζ
(
JJ3

φ
)
+Sφ (D.17)

where the scalar flux, J3
φ , is given by:

J3
φ =

(
Γφ +

µt

σφ

)
g33 ∂φ

∂ζ
(D.18)

D.5 Turbulent Kinetic Energy, k

The subgrid k-equation, obtained in a similar manner to that described above for the scalar equation,

is given by:

ρU√
g11

∂k
∂ξ

+
ρV√
g22

∂k
∂η

+
ρW√

g33

∂k
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σk

)
∂k
∂ζ

]
+G−ρε (D.19)

where the production rate of turbulent kinetic energy, G, is as follows:

G = −ρgimu jumU i
, j (D.20)

All the components of the production term are included in the UMIST-N wall function to account

for turbulence generation due to both normal and shear stress. Expressions for the Reynolds stress(
−ρuiu j

)
and strain-rate

(
U i

, j

)
are given above (see Equations C.89 to C.105). The expanded pro-



204 APPENDIX D. Subgrid Wall Function Transport Equations

duction term, G, has three dummy indices and therefore expands to 27 terms, as follows:

G = −ρuu(g11U,1 +g21V,1 +g31W,1)

−ρuv(g12U,1 +g22V,1 +g32W,1)

−ρuw(g13U,1 +g23V,1 +g33W,1)

−ρuv(g11U,2 +g21V,2 +g31W,2)

−ρvv(g12U,2 +g22V,2 +g32W,2)

−ρvw(g13U,2 +g23V,2 +g33W,2)

−ρuw(g11U,3 +g21V,3 +g31W,3)

−ρvw(g12U,3 +g22V,3 +g32W,3)

−ρww(g13U,3 +g23V,3 +g33W,3) (D.21)

The expression for the total dissipation rate is simplified by only considering the gradient of k1/2

normal to the wall (i.e. in the ζ-direction):

ε = ε̃+2νg jm

(
∂k1/2

∂ξm

)(
∂k1/2

∂ξ j

)

≈ ε̃+2νg33

(
∂k1/2

∂ζ

)(
∂k1/2

∂ζ

)
(D.22)

D.6 Dissipation Rate, ε̃

The subgrid ε̃-equation is given by:

ρU√
g11

∂ε̃
∂ξ

+
ρV√
g22

∂ε̃
∂η

+
ρW√

g33

∂ε̃
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σε

)
∂ε̃
∂ζ

]

+cε1 f1G
ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3

(D.23)

The source terms appearing in the ε̃-equation include production (cε1Gε̃/k), dissipation
(
cε2ε̃2/k

)
,

Yap correction (Yc) and the near-wall gradient production source term (Pε3). The production term, G,

is expanded as above, Equation (D.21). The full expansion of the gradient production source term,

Pε3, is given by:

Pε3 = 2µνt gimg jngl p (gnoUm
,o

)
,p

(
g jkU i

,k

)
,l

(D.24)
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where, from Equation (B.109), the double-derivative of the velocity component is given by:

(
g jkU i

,k

)
,l

=
∂
(

g jkU i
,k

)

∂ξl +g jkUm
,k Γi

ml +gmkU i
,kΓ j

ml (D.25)

Clearly, the full expansion of Pε3 cannot be used within the UMIST-N wall function without con-

siderable cost. To simplify this term, it is assumed that only the gradient of the wall-parallel U and

V velocity components in the wall-normal ζ-direction are significant (i.e. k = l = o = p = 3 and

i = m = 1,2):

Pε3 = 2µνt

[
g11g jng33 (gn3U,3

)
,3

(
g j3U,3

)
,3 +g22g jng33 (gn3V,3

)
,3

(
g j3V,3

)
,3

]
(D.26)

= 2µνt g11g33.{
g11

[(
g13U,3

)
,3

]2
+g22

[(
g23U,3

)
,3

]2
+g33

[(
g33U,3

)
,3

]2

+2g12
(
g13U,3

)
,3

(
g23U,3

)
,3 +2g13

(
g13U,3

)
,3

(
g33U,3

)
,3 +2g23

(
g23U,3

)
,3

(
g33U,3

)
,3

}

+2µνt g22g33.{
g11

[(
g13V,3

)
,3

]2
+g22

[(
g23V,3

)
,3

]2
+g33

[(
g33V,3

)
,3

]2

+2g12
(
g13V,3

)
,3

(
g23V,3

)
,3 +2g13

(
g13V,3

)
,3

(
g33V,3

)
,3 +2g23

(
g23V,3

)
,3

(
g33V,3

)
,3

}

(D.27)

where the double-derivative term is obtained from:

(
g j3U i

,3

)
,3

=
∂
(

g j3U i
,3

)

∂ζ
+g j3 (U,3Γi

13 +V,3Γi
23

)
+U i

,3

(
g13Γ j

13 +g23Γ j
23 +g33Γ j

33

)
(D.28)

The above expressions require the cell boundary values of strain-rates U,3 and V,3 (given by Equations

C.99 and C.102), the contravariant metric tensor g33 and the Jacobian, J.

D.7 Non-Linear EVM

In the non-linear eddy-viscosity model (NLEVM) of Craft et al. [30], the Reynolds stress is a function

of linear, quadratic and cubic combinations of strain-rate and vorticity. The constitutive equation for

the Reynolds stress anisotropy, ai j , defined as the traceless ratio of the Reynolds stress to the turbulent

kinetic energy is given in Equation (2.27) for Cartesian coordinates. In order to satisfy the summation

convention in non-orthogonal curvilinear coordinates (i.e. summation between repeated upper and
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lower pairs of indices) this becomes:

ai j =
uiu j

k
− 2

3
gi j

= −νt

k
Si j

+c1
νt

ε̃

(
gklS

ikS jl − 1
3

gkmglnSklSmngi j
)

+c2
νt

ε̃

(
gklΩikS jl +gklΩ jkSil

)

+c3
νt

ε̃

(
gklΩikΩ jl − 1

3
gkmglnΩklΩmngi j

)

+c4
νt k
ε̃2

(
SkiΩl j +Sk jΩli

)
glmgknSmn

+c5
νt k
ε̃2

(
gklgmnΩikΩlnSm j +gklgmnSikΩlnΩm j − 2

3
gklgmognpSkmΩonΩplgi j

)

+c6
νt k
ε̃2 gkmglnSi jSmlSkn

+c7
νt k
ε̃2 gkmglnSi jΩmlΩkn (D.29)

with non-orthogonal curvilinear strain-rate and vorticity tensors:

Si j = g jmU i
,m +gimU j

,m Ωi j = g jmU i
,m −gimU j

,m (D.30)

The Craft et al. model also involves a cµ function which is sensitized to the dimensionless strain-rate

and vorticity invariants. In Cartesian coordinates these are given by:

S̃ =
k
ε̃

√
1
2

Si jSi j Ω̃ =
k
ε̃

√
1
2

Ωi jΩi j (D.31)

In order to satisfy the summation convention in non-orthogonal curvilinear coordinates two additional

contravariant metric tensors must be introduced into the above expression:

S̃ =
k
ε̃

√
1
2

gikg jlSk jSil Ω̃ =
k
ε̃

√
1
2

gikg jlΩk jΩil (D.32)

The recent Craft et al. paper [67] introduced an additional term in the cµ function involving the di-

mensionless third invariant of the strain-rate tensor, SI . In Cartesian coordinates this is given by:

SI =
Si jS jkSki

(SnlSnl/2)3/2
(D.33)

and in curvilinear coordinates:

SI =
gilg jmgknSl jSmkSni

(goqgprSqpSor/2)3/2
(D.34)
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The SI term in non-orthogonal curvilinear coordinates, with ten dummy indices

(i, j,k, l,m,n,o, p,q,r), is extremely expensive to calculate fully and was not used in the non-orthogonal

UMIST-N wall function implementation of the Craft et al. model. To improve the numerical stability

of the model, the tensorially linear c6 and c7 terms in Equation D.29 are treated as effective viscosity

terms when their sum is negative (see discussion in Section 2.3). The Reynolds stress is then given

by:

−ρuiu j = µ′t S
i j −ρûiu j − 2

3
gi jρk (D.35)

where the modified eddy-viscosity, µ′
t , and the remaining higher-order components of the Reynolds

stress, ûiu j, are given by:

µ′t = µt −µt
k2

ε̃2 min
[(

c6gkmglnSmlSkn + c7gkmglnΩmlΩkn
)

,0
]

(D.36)

ûiu j = c1
νt k
ε̃

(
gklS

ikS jl − 1
3

gkmglnSklSmngi j
)

+c2
νt k
ε̃

(
gklΩikS jl +gklΩ jkSil

)

+c3
νt k
ε̃

(
gklΩikΩ jl − 1

3
gkmglnΩklΩmngi j

)

+c4
νt k2

ε̃2

(
SkiΩl j +Sk jΩli

)
glmgknSmn

+c5
νt k2

ε̃2

(
gklgmnΩikΩlnSm j +gklgmnSikΩlnΩm j − 2

3
gklgmognpSkmΩonΩplgi j

)

+νt
k2

ε̃2 max
[(

c6gkmglnSmlSkn + c7gkmglnΩmlΩkn
)

,0
]

(D.37)

Using the NLEVM, the subgrid momentum equation becomes:

ρU√
g11

(
∂U (i)

∂ξ

)∗

+
ρV√
g22

(
∂U (i)

∂η

)∗

+
ρW√

g33

(
∂U (i)

∂ζ

)∗

=
1
J

∂
∂ζ

(
Jµ

′
e f f g33 ∂U (i)

∂ζ

)
+Si

U (D.38)

where i = 1 and i = 2 for the subgrid U - and V -momentum equations, respectively. The source term,

Si
U , is now given by:

Si
U = −gi j√gii

∂P
′

∂ξ j − τi j
Γm

i jgim√
gii

+ τm jΓi
m j
√

gii

+
1
J

∂
∂ζ

[
Jµ

′
e f f g33

(
U (m)

√
gii√

gmm
Γi

m3 −U
gim

gii
Γm

i3

)]

1
J

∂
∂ζ

(√
giiJρûiw

)

︸ ︷︷ ︸
(D.39)

where the underbraced term in Equation (D.39) is a new term introduced by the NLEVM, the modified

eddy-viscosity is given by µ
′
e f f = µ + µ

′
t , and the stress tensor terms in the above equations are now
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calculated using:

τi j = µ
′
e f f Si j −ρûiu j − 2

3
gi jρk (D.40)

D.8 Differential Yap Correction

The differential length-scale correction developed by Iacovides & Raisee [66] is given by:

Ydc = cw
ε̃2

k
max

[
F (F +1)2 ,0

]
(D.41)

where:

F =
1
cl

[(
∂l
∂x j

∂l
∂x j

)1/2

−dledy

]
(D.42)

The constants cw and cl and the function dledy are given in Section 2.2 and l is the turbulence length

scale, calculated from l = k3/2/ε. The gradient of the length scale in non-orthogonal curvilinear

coordinates given by:

F =
1
cl

[(
g jk ∂l

∂ξ j

∂l
∂ξk

)1/2

−dledy

]
(D.43)

In the UMIST-N wall function, this is simplified to:

F =
1
cl

[(
g33 ∂l

∂ζ
∂l
∂ζ

)1/2

−dledy

]
(D.44)

where it is assumed that the gradient of the length scale parallel to the wall is negligible in comparison

with the gradient normal to the wall.



Appendix E

Numerical Treatment of Subgrid

Transport Equations

In the Appendix D, the subgrid momentum, scalar, turbulent kinetic energy and dissipation rate equa-

tions were derived. Each of the subgrid transport equations can be written in the following generic

form:
ρU√
g11

(
∂φ
∂ξ

)∗
+

ρV√
g22

(
∂φ
∂η

)∗
+

ρW√
g33

(
∂φ
∂ζ

)∗
=

1
J

∂
∂ζ

(
Jg33Γ

∂φ
∂ζ

)
+C (E.1)

where φ denotes one of the subgrid parameters: U , V , k or ε̃, Γ is the diffusivity and the source term,

C, includes all geometry-related source terms and the pressure gradient in the momentum equations.

Following the finite-volume method, the subgrid transport equations are discretized and integrated

over subgrid control volumes which have physical dimensions (J∆ξ∆η∆ζ) where, in the present treat-

ment, it is assumed that the ξ-axis is parallel to east-west, η-axis north-south and ζ-axis top-bottom

(the wall-normal direction). Using the same method as used previously for the UMIST-N wall func-

tion, gradients appearing in diffusion and source terms are calculated using central differencing while

convective terms are discretized using upwind differencing.

E.1 1-D Diffusion

Considering only diffusion and the source term, the generic subgrid transport equation can be written:

1
J

∂
∂ζ

(
Jg33Γ

∂φ
∂ζ

)
+C = 0 (E.2)

which is discretized:

1
∆ζtb

(
1
J

)

P

[(
Jg33Γ

∂φ
∂ζ

)

t
−
(

Jg33Γ
∂φ
∂ζ

)

b

]
+(C)P = 0 (E.3)
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and integrated over the control volume (where ∆Vol = J∆ξew∆ηns∆ζtb):

[(
Jg33Γ

)
t

(φT −φP)

∆ζTP
−
(
Jg33Γ

)
b

(φP −φB)

∆ζPB

]
∆ξew∆ηns +(C)P ∆Vol (E.4)

where subscripts T , P, and B refer to the top, current and bottom nodes respectively, t and b denote

values at the top and bottom boundaries of the subgrid cell, respectively. Equation (E.4) can be

rearranged into:

Dt (φT −φP)−Db (φP −φB)+(C)P ∆Vol = 0 (E.5)

where:

Dt =
(
Jg33Γ

)
t

∆ξew∆ηew

∆ζTP
(E.6)

Db =
(
Jg33Γ

)
b

∆ξew∆ηns

∆ζPB
(E.7)

Grouping coefficients of φP, Equation (E.5) becomes:

DtφT +DbφB +(C)P ∆Vol = (Dt +Db)φP (E.8)

This can be expressed as:

aPφP = aT φT +aBφB +S (E.9)

where:

aT = Dt =
(
Jg33Γ

)
t

∆ξew∆ηew

∆ζTP
(E.10)

aB = Db =
(
Jg33Γ

)
b

∆ξew∆ηns

∆ζPB
(E.11)

aP = aT +aB (E.12)

S = (C)P ∆Vol (E.13)

It is assumed that the cells have unit dimensions in curvilinear coordinates, i.e.:

∆ξew = ∆ηns = ∆ζtb = 1 (E.14)

Additionally, the distances between adjacent nodes are assumed to be unity so that, for example:

∆ξEP = 1 (E.15)

In the subgrid cells adjacent to boundaries the distance from the node to the boundary is half a cell

width. For example, the subgrid cell adjacent to bottom boundary shown in Figure E.1 has ∆ζPB = 0.5.
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The covariant metric tensor (g33)b at the bottom boundary of the near-wall cell is given by:

(g33)b =
∂z
∂ζ

∂z
∂ζ

=

(
zP − zB

∆ζPB

)2

=

(
∆zPB

0.5

)2

(E.16)

the Jacobian, J, at the bottom boundary is calculated from:

(J)b = (
√

g11g22g33)b = 2∆xew∆yns∆zPB (E.17)

and the contravariant metric tensor
(
g33
)

b is given by:

(
g33)

b =
1
J2 g11g22 =

(∆xew∆yns)
2

4(∆xew∆yns∆zPB)2 =
1

4(∆zPB)2 (E.18)

Substituting these expressions into Equation (E.11) for the diffusion coefficient at the bottom bound-

ary:

aB =
(
Jg33Γ

)
b

∆ξew∆ηns

∆ζPB

= 2∆xew∆yns∆zPB
1

4(∆zPB)2 Γb
1

0.5

=
∆xew∆ynsΓb

∆zPB
(E.19)

This is exactly the same form as would be expected in a standard Cartesian discretization of the

diffusion term. The coefficients are in the form (aB = ΓbA/L), where A is the cross-sectional area of

the cell and L is the distance between the near-wall node and the node on the boundary.

-)-)-)-)-)-)-)-)-)-)-)-)-)-)-�-)-)-)-)-)-)-)-)-)--)-)-)-)-)-)-)-)-)-)-)-)-)-)-�-)-)-)-)-)-)-)-)-)--)-)-)-)-)-)-)-)-)-)-)-)-)-)-�-)-)-)-)-)-)-)-)-)-ζ

ξ
P

z

x B

T

t

∆ζtb=1
b

∆ζTP=1

∆ζPB=0.5

Figure E.1: Near-wall subgrid arrangement showing the location of the nodes and the computational
cell widths.

E.2 Convection Parallel to the Wall

Convection of scalar φ in the ξ-direction is integrated over the subgrid cell volume (∆Vol) and added

into the discretized equation source term, S, as follows:
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S = −
�

∆Vol

ρU√
g11

∂φ
∂ξ

dVol (E.20)

where the minus sign is introduced since the convection term is moved from the left- to the right-hand-

side of the transport equation (Equation E.1). Using an upwind scheme, the convective ξ-direction

source term is given by:

S = −
(

ρU√
g11

)

P

(φP −φW )

∆ξPW
∆Vol for UP > 0 (E.21)

S = −
(

ρU√
g11

)

P

(φE −φP)

∆ξEP
∆Vol for UP < 0 (E.22)

Rearranging these expressions in terms of coefficients of φP, φE and φW and splitting the source S into

sU and sP terms (as described in Chapter 3) one obtains the following expressions:

sU =

(
ρU√
g11

)

P

φW

∆ξPW
∆Vol

sP = −
(

ρU√
g11

)

P

1
∆ξPW

∆Vol





for UP > 0 (E.23)

sU = −
(

ρU√
g11

)

P

φE

∆ξEP
∆Vol

sP =

(
ρU√
g11

)

P

1
∆ξEP

∆Vol





for UP < 0 (E.24)

where the discretized equation is given by:

(aP − sP)φP = aT φT +aBφB + sU (E.25)

Using a similar approach one can show that the convective flux in the wall-parallel η-direction results

in the following source terms:

sU =

(
ρVP√

g22

)

P

φS

∆ηPS
∆Vol

sP = −
(

ρVP√
g22

)

P

1
∆ηPS

∆Vol





for VP > 0 (E.26)
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sU = −
(

ρVP√
g22

)

P

φN

∆ηNP
∆Vol

sP =

(
ρVP√

g22

)

P

1
∆ηNP

∆Vol





for VP < 0 (E.27)

E.3 Convection Normal to the Wall

Convection of scalar φ in the ζ-direction is integrated over the subgrid cell volume and added into the

discretized equation source term, S, as follows:

S = −
�

∆Vol

ρW√
g33

∂φ
∂ζ

dVol (E.28)

where the W -velocity is obtained from subgrid continuity with additional scaling to satisfy the bound-

ary conditions, as described in Section E.7. Using an upwind scheme, the convective ζ-direction

source term is given by:

S = −
(

ρW√
g33

)

P

(φP −φB)

∆ζPB
∆Vol for WP > 0 (E.29)

S = −
(

ρW√
g33

)

P

(φT −φP)

∆ζTP
∆Vol for WP < 0 (E.30)

The above source terms can be rearranged in terms of coefficients of the nodal terms φN , φP and φS

and then split into contributions for the source term sP and the coefficients aT and aB, as follows:

sP = −
(

ρW√
g33

)

P

1
∆ζPB

∆Vol

aT = 0

aB =

(
ρW√

g33

)

P

1
∆ζPB

∆Vol





for WP > 0 (E.31)

sP =

(
ρW√

g33

)

P

1
∆ζTP

∆Vol

aT = −
(

ρW√
g33

)

P

1
∆ζTP

∆Vol

aB = 0





for WP < 0 (E.32)
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E.4 Summary of Discretized Convection Terms

The following equations summarize the terms arising in the discretized subgrid transport equations

due to convection parallel and normal to the wall:

sU =

(
ρ√
g11

)

P

max (UP,0)φW

∆ξPW
∆Vol +

(
ρ√
g11

)

P

max (−UP,0)φE

∆ξEP
∆Vol

+

(
ρ√
g22

)

P

max (VP,0)φS

∆ηPS
∆Vol +

(
ρ√
g22

)

P

max (−VP,0)φN

∆ηNP
∆Vol (E.33)

sP =

(
ρ√
g11

)

P

min(−UP,0)

∆ξPW
∆Vol +

(
ρ√
g11

)

P

min (UP,0)

∆ξEP
∆Vol

+

(
ρ√
g22

)

P

min (−VP,0)

∆ηPS
∆Vol +

(
ρ√
g22

)

P

min(VP,0)

∆ηNP
∆Vol

+

(
ρ√
g33

)

P

min (−WP,0)

∆ζPB
∆Vol +

(
ρ√
g33

)

P

min(WP,0)

∆ζTP
∆Vol (E.34)

aT =

(
ρ√
g33

)

P

max (−WP,0)

∆ζTP
∆Vol (E.35)

aB =

(
ρ√
g33

)

P

max (WP,0)

∆ζPB
∆Vol (E.36)

Convection of momentum follows the same approach as described above for scalar φ once the up-

stream velocity has been transformed from the coordinate system used in the upstream cell into the

coordinate system of the current cell.

E.5 Source Terms

The following sections identify the source terms for the subgrid momentum, turbulent kinetic energy

and dissipation rate equations in addition to those derived above from convection.

E.5.1 U -Momentum

Using the linear k− ε model, the source term S1
U in the subgrid wall-parallel U -momentum equation

is given by:

S1
U = −g1 j√g11

∂P
′

∂ξ j − τ1 j
Γm

1 jg1m√
g11

+ τm jΓ1
m j
√

g11

+
1
J

∂
∂ζ

[
Jµe f f g

33
(

U (m)

√
g11√
gmm

Γ1
m3 −U

g1m

g11
Γm

13

)]
(E.37)
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The four terms in S1
U are expanded as follows:

−g1 j√g11
∂P

′

∂ξ j = −√
g11

(
g11 ∂P

′

∂ξ
+g12 ∂P

′

∂η
+g13 ∂P

′

∂ζ

)
(E.38)

−τ1 j
Γm

1 jg1m√
g11

= − τ11

√
g11

(
Γ1

11g11 +Γ2
11g12 +Γ3

11g13
)

− τ12

√
g11

(
Γ1

12g11 +Γ2
12g12 +Γ3

12g13
)

− τ13

√
g11

(
Γ1

13g11 +Γ2
13g12 +Γ3

13g13
)

(E.39)

τm jΓ1
m j
√

g11 =
√

g11
(
τ11Γ1

11 + τ21Γ1
21 + τ31Γ1

31

)

+
√

g11
(
τ12Γ1

12 + τ22Γ1
22 + τ32Γ1

32

)

+
√

g11
(
τ13Γ1

13 + τ23Γ1
23 + τ33Γ1

33

)
(E.40)

1
J

∂
∂ζ

[
Jµe f f g

33
(

U (m)

√
g11√
gmm

Γ1
m3 −U

g1m

g11
Γm

13

)]

=
1
J

∂
∂ζ

[
Jµe f f g33

(
U
√

g11√
g11

Γ1
13 +V

√
g11√
g22

Γ1
23 +W

√
g11√
g33

Γ1
33

)

−
(

U
g11

g11
Γ1

13 +U
g12

g11
Γ2

13 +U
g13

g11
Γ3

13

)]
(E.41)

The above source terms are integrated over the subgrid cell and included in the discretized U -momentum

equation source term, sU , as follows:

sU =

�
∆Vol

(
S1

U

)
P dVol (E.42)

where (∆Vol = J∆ξ∆η∆ζ) is the volume of the subgrid cell and ()P denotes the value obtained at the

current node P. The wall-parallel components of the pressure-gradient term (∂P
′
/∂ξ and ∂P

′
/∂η) are

calculated from the main-grid node pressure values. The calculation of the pressure profile across the

subgrid in order to find ∂P
′
/∂ζ is discussed in Section E.9.
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E.5.2 V -Momentum

The source term S2
U in the subgrid wall-parallel V -momentum equation is given by:

S2
U = −g2 j√g22

∂P
′

∂ξ j − τ2 j
Γm

2 jg2m√
g22

+ τm jΓ2
m j
√

g22

+
1
J

∂
∂ζ

[
Jµe f f g33

(
U (m)

√
g22√
gmm

Γ2
m3 −V

g2m

g22
Γm

23

)]
(E.43)

The four terms in S2
U are expanded:

−g2 j√g22
∂P
∂ξ j = −√

g22

(
g21 ∂P

∂ξ
+g22 ∂P

∂η
+g23 ∂P

∂ζ

)
(E.44)

τ2 j
Γm

2 jg2m√
g22

= − τ21

√
g22

(
Γ1

21g21 +Γ2
21g22 +Γ3

21g23
)

− τ22

√
g22

(
Γ1

22g21 +Γ2
22g22 +Γ3

22g23
)

− τ23

√
g22

(
Γ1

23g21 +Γ2
23g22 +Γ3

23g23
)

(E.45)

τm jΓ2
m j
√

g22 =
√

g22
(
τ11Γ2

11 + τ21Γ2
21 + τ31Γ2

31

)

+
√

g22
(
τ12Γ2

12 + τ22Γ2
22 + τ32Γ2

32

)

+
√

g22
(
τ13Γ2

13 + τ23Γ2
23 + τ33Γ2

33

)
(E.46)

1
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∂
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33
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√
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gmm
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Γm

23
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=
1
J

∂
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[
Jµe f f g33

(
U
√

g22√
g11

Γ2
13 +V

√
g22√
g22

Γ2
23 +W

√
g22√
g33

Γ2
33

)

−
(

V
g21

g22
Γ1

23 +V
g22

g22
Γ2

23 +V
g23

g22
Γ3

23

)]
(E.47)

These source terms are integrated over the subgrid cell and included in the discretized V -momentum

equation source term in the same manner as described above for the U -momentum equation.

E.5.3 Turbulent Kinetic Energy, k

The kinetic energy equation in non-orthogonal curvilinear coordinates is given by:

ρU√
g11

∂k
∂ξ

+
ρV√
g22

∂k
∂η

+
ρW√

g33

∂k
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σk

)
∂k
∂ζ

]
+G−ρε (E.48)
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where the production term, G (given by Equation D.21) and the dissipation term, ε (given by Equation

D.22) are grouped together into the source term, S:

S = G−ρε (E.49)

In order to maximize stability, the integrated source term split into components sU and sP as follows:

sU = max [(G−ρε̃) ,0]P ∆Vol (E.50)

sP =
1
kP

{max [(G−ρε̃) ,0]−ρε̂}P ∆Vol (E.51)

where:

ε̂ = 2νg33

(
∂k1/2

∂ζ

)(
∂k1/2

∂ζ

)
(E.52)

E.5.4 Dissipation Rate, ε̃

The dissipation rate equation in non-orthogonal curvilinear coordinates is given by:

ρU√
g11

∂ε̃
∂ξ

+
ρV√
g22

∂ε̃
∂η

+
ρW√

g33

∂ε̃
∂ζ

=
1
J

∂
∂ζ

[
Jg33

(
µ+

µt

σε

)
∂ε̃
∂ζ

]

+cε1 f1G
ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (E.53)

where the gradient production term Pε3 is given in Equation (D.27). The source term, S, is as follows:

S = cε1 f1G
ε̃
k
− cε2 f2ρ

ε̃2

k
+ρYc +Pε3 (E.54)

which is integrated over the subgrid control volume and split into components sU and sP, given by:

sU =

{
max

[(
cε1 f1G

ε̃
k
− cε2 f2ρ

ε̃2

k

)
,0

]
+ρYc +Pε3

}

P
∆Vol (E.55)

sP =
1
ε̃P

{
min

[(
cε1 f1G

ε̃
k
− cε2 f2ρ

ε̃2

k

)
,0

]}

P
∆Vol (E.56)

E.5.5 Main-Grid Pε3 Source Term

A low-Reynolds-number turbulence model is used in the main-grid domain, when the UMIST-N wall

function is used, so that arbitrarily small near-wall cells can be employed. In the low-Re Launder-

Sharma and Craft et al. models, the main-grid ε̃-equation includes a damping term known as the

gradient production, Pε3. Care must be taken in evaluating the Pε3 at the main-grid node adjacent to

the near-wall node (node P in Figure E.2)1. The treatment of the main-grid Pε3 term in the TEAM and

1In the near-wall main-grid cell (with node S in Figure E.2), the subgrid average Pε3 is used in the main-grid calculation.
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STREAM codes is discussed below.

The gradient production term involves double-derivatives of the velocity components and is writ-

ten in Cartesian coordinates as follows:

Pε3 = 2µνt

(
∂2Ui

∂x j∂xk

)2

(E.57)

To determine a double derivative, such as ∂2U/∂y2, the strain-rate at the cell faces are first calculated,

(∂U/∂y)n and (∂U/∂y)s, and then the gradient of the strain-rate across the cell are calculated as

follows:
∂2U
∂y2 =

[(∂U/∂y)n − (∂U/∂y)s]

∆yns
(E.58)

where n and s denote the north and south cell faces, respectively. In the TEAM code the strain-

rate at cell faces is evaluated from the difference in velocity between neighbouring nodal values,

e.g. (∂U/∂y)n = (UN −UP)/∆yNP. The STREAM code, however, evaluates the strain-rates at the cell

face by interpolating between strain-rates evaluated at the cell centres, e.g. (∂U/∂y)n = 0.5 [(∂U/∂y)N +(∂U/∂y)S].

These two methods are shown in Figure E.2.
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(dU/dy)s = 0.5[(dU/dy)P+(dU/dy)S]
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∆yswall

x

n
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Us

(dU/dy)S = Us/∆yswall

Figure E.2: Schematics of the near-wall grid arrangement showing the main-grid strain-rate (∂U/∂y) s
as calculated by the TEAM code (left( and the STREAM code (right).

In the approach adopted by STREAM, the strain-rate at the southern cell boundary, s, shown in

Figure E.2, is not calculated accurately when the near-wall node is outside the viscous sublayer (say

y+ ≈ 30). This is because the main-grid strain-rate at the near wall node, (∂U/∂y)S, is calculated

assuming a linear velocity profile across the near-wall main-grid cell (whereas the actual velocity

profile is closer to logarithmic for a plane channel flow). In the approach adopted by TEAM, this

problem does not occur since it only uses the velocity at the main-grid nodes P and S to evaluate the

gradient at the cell face.

To obtain a more accurate value for the main-grid strain-rate at the cell boundary with the STREAM

code, one could use the strain-rate in the subgrid cell adjacent to the boundary (i.e. in the subgrid cell

next to position s in Figure E.2). However, the transformation of the second-order strain-rate tensor
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from contravariant subgrid components to Cartesian main-grid components is costly, as the tensor

expression involves three dummy indices for each of the 9 independent strain-rate components (for

details see Section E.8):

V p,q
︸︷︷︸

Cartesian

= g jk ∂xp

∂ξi

∂xq

∂ξk U i
, j︸︷︷︸

contravariant

(E.59)

An alternative and more computationally efficient approach is simply to scale the main-grid Pε3 term

so that it only becomes active when a relatively fine near-wall grid is used, in which case the assumed

linear velocity profile across the main-grid near-wall cell is an adequate approximation. The following

function was tested in the Ahmed body flow:

fPε3 = exp

(
− R̃t

55

)4

(E.60)

where R̃t is the turbulence Reynolds number. The above fPε3 function rapidly decreases from fPε3 =

0.92 at R̃t = 30 to fPε3 = 0.07 at R̃t = 70. Using this function, the linear k− ε model main-grid Pε3

term becomes:

Pε3 = 2 fPε3µνt

(
∂2Ui

∂x j∂xk

)2

(E.61)

E.6 Grid Generation and Geometric Parameters

A number of geometric parameters are involved in the subgrid transport equations in non-orthogonal

curvilinear coordinates such as metric tensors (gi j) and Christoffel symbols
(

Γi
jk

)
. Table E.1 gives a

list of these parameters and where they are evaluated (at the subgrid node or at the subgrid cell face).

To calculate and store each of these parameters at each subgrid node along the length of the wall

would entail huge storage costs. Instead, efficient interpolation routines are employed. Values of the

particular geometric parameter are stored at the top and bottom subgrid domain boundaries together

with a few interpolation constants and, at each iteration, values of the parameter within the subgrid

are interpolated.

The following sections firstly discuss grid generation and the calculation of grid parameters s and

∆s, which denote the position and thickness of the subgrid cells, respectively. A description of the

interpolation practices used for calculating the covariant metric tensors, g i j , is then given. This is

followed by a presentation of the equations used to calculate the Jacobian, the contravariant metric

tensors and the Christoffel symbols.

E.6.1 Generating the Subgrid Mesh

Figure E.3 shows a typical curvilinear grid arrangement where the subgrid mesh is embedded within

the near-wall cell which has corners ABCD. Subgrid vertices on the AD line are numbered from 1 to

(n− 1) and subgrid nodes from 1 to n. The position of the main-grid vertex at corner A is denoted
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Geometric Node/ Term in which See
Parameter Boundary the parameter appears Equations

J Node ∆Vol in convection and source terms (E.33–E.36),
(E.50), (E.51),
(E.42) etc.

Boundary Pε3 and Diffusion (D.27), (E.4)

Γi
jk Node Momentum equation source terms,

strain-rate for G
(D.21), (D.12)

Boundary Strain-rate for Pε3,
(
∂τ13/∂ζ

)
(D.27), (D.12)

gi j Node Pressure gradient, ε, G (D.21), (D.22),
(D.12)

Boundary Pε3 (D.27)

gi j Node Convection, source terms, G (D.21), (E.33–
E.36), (E.50),
(E.51) etc.

Boundary
(
∂τ13/∂ζ

)
(D.12)

Table E.1: Geometric parameters employed in the subgrid transport equations in non-orthogonal
curvilinear coordinates and where the parameter is required (at the node or boundary).

0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�00�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0

A B

CD 1
2

3

4

5

(n−1)

6

0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�00�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0ds

r4ds

r3ds

r2ds

rds

r(n−3)ds

3

4

6

(n−1)

n

5

∆s2

∆s3

∆s4

∆s5

∆s6

∆s(n−1)

s

1
2

Figure E.3: Subgrid arrangement showing node and vertex notation and cell thicknesses. Distances
indicated on the right are in the measured parallel to the s-axis (the physical equivalent of the ζ-axis).
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with upper-case (XVA,YVA,ZVA) and the position of the subgrid nodes with lower-case (xi,yi,zi). The

positions of the first and last subgrid nodes are given by:

x1 =
1
2

(XVC +XVD) ; y1 =
1
2

(YVC +YVD) ; z1 =
1
2

(ZVC +ZVD) (E.62)

xn =
1
2

(XVA +XVB) ; yn =
1
2

(YVA +YVB) ; zn =
1
2

(ZVA +ZVB) (E.63)

Between the first and last subgrid nodes the subgrid is algebraically generated, expanding with a given

ratio from the wall to the outer edge of the domain, according to:

∆si = r∆si−1 (E.64)

where r is the expansion ratio and ∆si is the cell width for node i, measured in the s-direction (par-

allel to the curvilinear ζ-axis). The distance between the bottom and top subgrid domain boundary

locations, s1 and sn, consists of the sum of the control volume widths:

sn − s1 = t ds (E.65)

where:

t =
(n−3)

∑
m=0

rm =
(

1+ r + r2 + ...+ r(n−3)
)

(E.66)

The thickness of the smallest control volume (adjacent to the wall) is then given by:

ds =
(sn − s1)

t
(E.67)

The thickness of a subgrid cell, ∆si, is as follows:

∆si = r(i−2)ds

=
r(i−2)

t
(sn − s1) (E.68)

This can also be expressed as:

ci =
∆si

(sn − s1)
=

r(i−2)

∑(n−3)
m=0 rm

(E.69)

where ci is the ratio of the size of the subgrid cell, ∆si, to the thickness of the subgrid domain (sn−s1).

This ratio is only dependent upon the given expansion ratio, r, and the number of nodes, n. The ratio

∆si/(sn − s1) is stored for each wall (only requiring an array with n values, where n is the number of

subgrid nodes across a given main-grid cell) and the thickness of a particular subgrid cell is obtained

from the product of this ratio and the width of the main-grid near-wall cell (sn−s1). One can calculate
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the thickness of cell i in Cartesian coordinates as follows:

(∆xtb)i = ci (xn − x1) (E.70)

(∆ytb)i = ci (yn − y1) (E.71)

(∆ztb)i = ci (zn − z1) (E.72)

where:

∆s2
i = (∆xtb)

2
i +(∆ytb)

2
i +(∆ztb)

2
i (E.73)

and:

(sn − s1)
2 = (xn − x1)

2 +(yn − y1)
2 +(zn − z1)

2 (E.74)

Subscript tb refers to the distance from the top to the bottom of cell i (for cell notation see also Figure

E.7). The location of the subgrid nodes in terms of distance s is determined from:

si = s1 +
1
2

∆si +
(i−1)

∑
j=2

∆s j (E.75)

so that, for instance, the location of node 4 in Figure E.3 is given by:

s4 = s1 +∆s2 +∆s3 +
1
2

∆s4 (E.76)

where s1 is the location of the wall. Substituting Equation (E.69) into (E.75):

si − s1 =
1
2

ci (sn − s1)+
(i−1)

∑
j=2

[c j (sn − s1)]

= (sn − s1)

(
1
2

ci +
(i−1)

∑
j=2

c j

)

= (sn − s1)di (E.77)

which states that the position of the subgrid node relative to the wall (s i − s1) is a function of the

thickness of the main-grid cell (sn − s1) and parameter di. Parameter di is only a function of ci which

was shown above to have storage requirements limited to a one-dimensional array with n entries.

The location of the top boundary of subgrid cell i, denoted st
i , is calculated as follows:

st
i = s1 +

i

∑
j=2

∆s j (E.78)
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Rearranging this, using Equation (E.69), one obtains:

st
i − s1 =

i

∑
j=2

[c j (sn − s1)]

= (sn − s1)

(
i

∑
j=2

c j

)

= (sn − s1)ei (E.79)

where ei depends only upon ci and hence can be stored in a one-dimensional array with n entries. The

parameter ei is used to interpolate values to the top and bottom faces of the subgrid cells.

To summarize the above discussion, the subgrid is generated by specifying the number of subgrid

nodes n (which includes nodes on the top and bottom boundaries) and the expansion ratio r, for which

(r > 1) leads to smaller cells near the wall than the outer boundary of the subgrid. The thickness each

subgrid cell, ∆si, is obtained from:

∆si = ci (sn − s1) (E.80)

where:

ci =
r(i−2)

∑(n−3)
m=0 rm

(E.81)

and the position of each subgrid node si relative to the wall boundary node, s1, is given by:

si − s1 = (sn − s1)di (E.82)

where:

di =

(
1
2

ci +
(i−1)

∑
j=2

c j

)
(E.83)

The position of the subgrid top boundary for cell i is also calculated from

st
i − s1 = (sn − s1)ei (E.84)

where:

ei =
i

∑
j=2

c j (E.85)

E.6.2 Interpolation to Subgrid Cell Boundaries

In order to assemble the diffusion terms in the coefficient matrix it is necessary to interpolate to

find the eddy-viscosity at subgrid cell boundaries. The subgrid nodes are positioned in the centre of

the subgrid cells (as defined by the calculation of di, see Equation E.77), and linear interpolation of

parameter φ to the top boundary (position t in Figure E.4) is achieved using the function f i:

φt = φi + fi (φi+1 −φi) (E.86)
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i+1 ∆si+1

∆si

∆si−1

∆si /2

s
i

i−1

x t

Figure E.4: Subgrid cells showing position of nodes within the cells

where:

fi =
∆si

(∆si+1 +∆si)
(E.87)

Using Equation (E.80), this can be written:

fi =
ci (sn − s1)

[ci+1 (sn − s1)+ ci (sn − s1)]
=

ci

(ci+1 + ci)
(E.88)

For an entire wall, the interpolation function can therefore be stored in a single one-dimensional array

with n entries (where n is the number of subgrid cells in the wall-normal direction).

1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&11&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1
ξ

η
ζ 2&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2

2&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&22&2&2&2&2&2

2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&22&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2
n

s
b

t

(g33)0.5

(g22)0.5

(g11)0.5

e
w

Figure E.5: Three-dimensional near-wall cell showing subgrid volume (shaded). The square-root
of the metric tensors

√
g11,

√
g22 and

√
g33 represent the physical distances between the east-west,

north-south and top-bottom faces, respectively.

In addition to interpolating values at the top and bottom subgrid cell faces, it is necessary to find

east, west, north and south subgrid cell face values. These are used, for example, in the calculation of

the subgrid W -velocity. The value of φ at the eastern subgrid cell boundary is given by:

φe = φP + f e
j (φE −φP) (E.89)
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where:

f e
j =

1
2

√
(g11)P√
(g11)e

(E.90)

and likewise:

φw = φW + f w
j (φP −φW ) ; f w

j =
1
2

√
(g11)W√
(g11)w

(E.91)

φn = φP + f n
k (φN −φP) ; f n

k =
1
2

√
(g22)P√
(g22)n

(E.92)

φs = φS + f s
j (φP −φS) ; f s

k =
1
2

√
(g22)S√
(g22)s

(E.93)

where upper case E,W,N,S refer to nodal values and lower case e,w,n,s refer for cell face values in

the east, west, north and south directions respectively.

E.6.3 Covariant Metric Tensor, gi j

The covariant metric tensor, gi j , is calculated from:

gi j =
3

∑
k=1

∂xk

∂ξi

∂xk

∂ξ j =
∂x
∂ξi

∂x
∂ξ j +

∂y
∂ξi

∂y
∂ξ j +

∂z
∂ξi

∂z
∂ξ j (E.94)

So, for example, g12 is given by:

g12 = xξxη + yξyη + zξzη (E.95)

where, for example:

xξ ≡
∂x
∂ξ

=
xe − xw

∆ξew
= xe − xw (E.96)

The gi j components are given by:

[gi j] =




g11 g12 g13

g21 g22 g23

g31 g32 g33




=




(
x2

ξ + y2
ξ + z2

ξ

) (
xξxη + yξyη + zξzη

) (
xξxζ + yξyζ + zξzζ

)
(
xξxη + yξyη + zξzη

) (
x2

η + y2
η + z2

η
) (

xηxζ + yηyζ + zηzζ
)

(
xξxζ + yξyζ + zξzζ

) (
xηxζ + yηyζ + zηzζ

) (
x2

ζ + y2
ζ + z2

ζ

)


 (E.97)

Since the metric tensor is symmetric (gi j = g ji), only 6 independent quantities need to be calculated.

In the UMIST-N wall function, rather than store all 6 components of the metric tensor for each

of the subgrid cells all the way along the wall, values of the metric tensors are stored at the subgrid

domain boundaries (top and bottom) together with a few interpolation constants. At the beginning
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Figure E.6: Three-dimensional view of subgrid block. The top surface ABCD is assumed to be parallel
to the wall surface EFGH . Both planes are parallel to the subgrid ξ−η plane.

of each subgrid iteration, values of the metric tensor within the subgrid are interpolated. The inter-

polation functions are derived below for each of the metric tensors. Figure E.6 shows the general

arrangement for a subgrid, where it is assumed that the top and bottom surfaces of the subgrid cells

are parallel to the wall surface.

C

ξ

η
ζ

t

e

n

s

w

b

∆rew

s

Figure E.7: Three-dimensional subgrid cell showing the distance from the east to the west face, ∆rew

. The physical wall-normal distance in the ζ-direction is denoted s.

The simplest interpolation functions are for the metric tensors g11 and g22. Figure E.7 shows a

typical subgrid cell and the distance between the east and west cell faces, ∆rew. The metric tensor, g11

is given by:

g11 = x2
ξ + y2

ξ + z2
ξ

= (xe − xw)2 +(ye − yw)2 +(ze − zw)2

= ∆r2
ew (E.98)

Distance ∆rew is a linear function of the physical wall-normal distance. The metric tensor g11 can

therefore be interpolating from values at the top and bottom of the subgrid block, as follows:

√
g11 =

(√
(g11)T −

√
(g11)B

)

(sn − s1)
(s− s1)+

√
(g11)B (E.99)
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where s1 is the position of the subgrid node on the wall surface, (sn − s1) is the total height of the

subgrid domain, and upper-case T and B refer to values at the top and bottom of the subgrid domain

(at the same positions as subgrid nodes 1 and n, shown in Figure E.3). Using Equation (E.82), this

expression can be written:

√
g11 =

√
(g11)B +

(√
(g11)T −

√
(g11)B

)
di (E.100)

A similar result can be obtained for the g22 metric, which is equivalent to the square of the distance

from the north to the south faces of the subgrid cell, (∆rns)
2. The metric tensor g33 is given by:

g33 = x2
ζ + y2

ζ + z2
ζ

= (xt − xb)
2 +(yt − yb)

2 +(zt − zb)
2

= ∆s2 (E.101)

where ∆s is the thickness of the subgrid cell, from top to bottom.

B
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D

n

e
w

s
η

ξ

A

∆rAC

∆rBD

Figure E.8: 2-D plane in the ξ−η axis used to calculate the metric tensor g12. The four sides of the
trapezoid ABCD are (in general) non-parallel and the lengths of the diagonal elements are denoted
∆rBD and ∆rAC.

The metric tensor g12 is given by:

g12 =
(
xξxη + yξyη + zξzη

)

= (xe − xw) (xn − xs)+(ye − yw)(yn − ys)+(ze − zw)(zn − zs) (E.102)
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The x-axis term can be expanded:

(xe − xw)(xn − xs) =
1
4

(xB + xC − xA − xD)(xA + xB − xC − xD)

=
1
4

[(
x2

B −2xBxD − x2
D

)
−
(
x2

A −2xAxC − x2
C

)]

=
1
4

[
(xB − xD)2 − (xA − xC)2

]
(E.103)

where subscripts A, B, C and D refer to corners of the quadrilateral element in the ξ−η plane, as

shown in Figure E.8. Performing similar manipulations of the y and z terms, the metric tensor g12 can

be written:

g12 =
1
4

[
(xB − xD)2 − (xA − xC)2

+(yB − yD)2 − (yA − yC)2

+(zB − zD)2 − (zA − zC)2
]

=
1
4

(
∆r2

BD −∆r2
AC

)
(E.104)

where ∆rBD is the length of the diagonal from corners B to D, and ∆rAC from corners A to C. The two

diagonals lie in the ξ−η plane parallel to the wall2. Both ∆rBD and ∆rAC are linear functions of the

distance along the ζ-axis, denoted s. The metric tensor g12 can therefore be interpolated from:

∆rBD = ∆rB
BD +

(
∆rT

BD −∆rB
BD

)
di (E.105)

∆rAC = ∆rB
AC +

(
∆rT

AC −∆rB
AC

)
di (E.106)

where:

g12 =
1
4

(
∆r2

BD −∆r2
AC

)
(E.107)

The interpolation of the g13 and g23 covariant metric tensors is slightly more complex than g12

as the diagonal lengths (shown in Figure E.9 as ∆rBD and ∆rAC) are no longer a linear function of

the distance from the wall since the subgrid cells have non-uniform thickness (assuming that cells

are clustered towards the wall). The following derivation proves that the metric tensor g13 is pro-

portional to
√

g11g33. Since expressions for the interpolation of g11 and g33 are already known, this

proportionality expression provides an efficient route to interpolating g13.

Using the cosine rule one can express the square of the length ∆rBD in terms of the lengths of the

sides of the triangle ABD or triangle BCD:

∆r2
BD = ∆r2

BC +∆r2
CD − 1

2
∆rBC∆rCD cosθ (E.108)

2N.B. if the cell is orthogonal in the ξ−η plane, the two diagonal lines ∆rBD and ∆rAC will be equal in length and hence
g12 will be zero.
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B

C

D

w

ζ

ξ

A
∆rBD

∆rAC

t

e

b

σ

φ

ψ

θ

Figure E.9: 2-D plane parallel to the ξ− ζ axis used to calculate the metric tensor g13. Sides AB
and CD of the trapezoid ABCD are both parallel to the wall while sides BC and DA are (in general)
non-parallel.

or:

∆r2
BD = ∆r2

AB +∆r2
AD − 1

2
∆rAB∆rAD cos σ (E.109)

Combining these two expressions:

∆r2
BD =

1
2

(
∆r2

BC +∆r2
CD +∆r2

AB +∆r2
AD

)
− 1

4
(∆rBC∆rCD cosθ+∆rAB∆rAD cosσ) (E.110)

Similarly, for the diagonal length ∆rAC one can write:

∆r2
AC =

1
2

(
∆r2

AB +∆r2
BC +∆r2

AD +∆r2
CD

)
− 1

4
(∆rAB∆rBC cosψ+∆rAD∆rCD cosφ) (E.111)

From Equation (E.104), the covariant metric g13 can be written:

g13 =
1
4

(
∆r2

BD −∆r2
AC

)

=
1
16

(∆rAB∆rBC cos ψ+∆rAD∆rCD cos φ

−∆rBC∆rCD cosθ−∆rAB∆rAD cosσ) (E.112)

It is assumed that the top and bottom faces of the subgrid cell are parallel and therefore the sum of the

internal angles (σ+φ) = 180o and (ψ+θ) = 180o, hence:

cos σ = cos (180o −φ) = −cosφ (E.113)

cosθ = cos (180o −ψ) = −cosψ (E.114)
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The metric tensor g13 can therefore be written:

g13 =
1

16
(∆rAB∆rBC cosψ+∆rAD∆rCD cosφ+∆rBC∆rCD cosψ+∆rAB∆rAD cosφ)

=
1

16
[(∆rAB∆rBC +∆rBC∆rCD)cosψ+(∆rAD∆rCD +∆rAB∆rAD)cosφ]

=
1

16
[(∆rAB +∆rCD) (∆rBC cosψ+∆rAD cos φ)] (E.115)

Earlier it was shown that the covariant metric tensor g11 is given by:

g11 =
1
2

(∆rAB +∆rCD) (E.116)

which is a linear function of the distance from the wall. The lengths of the sides ∆rBC and ∆rAD are

also proportional to the thickness of the subgrid cell, ∆s, and the angles ψ and φ are constant for a

particular near-wall main-grid cell. Therefore, using Equation (E.101) one can write:

g13 ∝
√

g11g33 (E.117)

The metric g13 can then be linearly interpolated as follows,

g13 = (g13)B +
[(g13)T − (g13)B][√

(g11g33)T −
√

(g11g33)B

]
[√

g11g33 −
√

(g11g33)B

]
(E.118)

or, more simply:

g13 = a
√

g11g33 +b (E.119)

where the metric tensors g11 and g33 are evaluated using Equations (E.99) and (E.101) respectively,

and constants a and b are given by:

a =
[(g13)T − (g13)B][√

(g11g33)T −
√

(g11g33)B

] ; b = (g13)B −
√

(g11g33)B [(g13)T − (g13)B](√
(g11g33)T −

√
(g11g33)B

) (E.120)

Note that in Equations (E.118) and (E.120), subscripts T and B do not refer to values at the top and

bottom of the subgrid domain. Instead these subscripts refer to values at the neighbouring cells (n−1)

and 2, shown in Figure E.3. This is because one needs to have a finite cell thickness (∆s i 6= 0) in order

to calculate g13. Constants a and b are calculated once and stored in computer memory to reduce

computing time. Values of (g13)T and (g13)B can be calculated from:

g13 = (xe − xw)(xt − xb)+(ye − yw) (yt − yb)+(ze − zw)(zt − zb) (E.121)

An analogous solution can be obtained for the g23 metric tensor, where the trapezoid ABCD is located

in the η−ζ plane.
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E.6.4 Jacobian, J

The Jacobian, J, is evaluated from the determinant of the covariant metric tensor matrix, g. Once one

has calculated all the gi j components across the subgrid, one can evaluate J from Equations (B.58)

and (B.95), as follows:

J =
√

g

= [g11 (g22g33 −g23g23)−g12 (g21g33 −g23g31)+g13 (g21g32 −g22g31)]
0.5 (E.122)

E.6.5 Contravariant Metric Tensor, gi j

The contravariant metric tensor, gi j , is evaluated by inverting of the covariant metric tensor matrix:

gi j =
1
g

Gi j (E.123)

where g is the determinant and Gi j is the matrix of cofactors of covariant metric tensor matrix. The

contravariant metric tensor is thus given by:

gi j =
1
g




G11 G12 G13

G21 G22 G23

G31 G32 G33




=
1
J2




(g22g33 −g23g32) −(g12g33 −g13g32) (g12g23 −g13g22)

−(g21g33 −g23g31) (g11g33 −g13g31) −(g11g23 −g13g21)

(g21g32 −g22g31) −(g11g32 −g12g31) (g11g22 −g12g21)


 (E.124)

where gi j = g ji and Gi j = G ji, hence only 6 independent cofactors need to be calculated.

The leading diagonal terms in the cofactor matrix (G11, G22 and G33) are equivalent to the square

of the ratio of the cell face areas to the cell volume. This can be deduced from the definition of the

contravariant metric tensor (Equation B.31), as follows:

g33 = g3 ·g3

=
1

∆Vol
(g1 ×g2) ·

1
∆Vol

(g1 ×g2)

=

(
A12

∆Vol

)2

(E.125)

where A12 is the area of the cell face in the ξ−η plane and ∆Vol is the cell volume. The above

equation can be used to determine the wall-normal distance from ∆Vol/A12, where A12 is the area of

the cell face on the wall.

Interpreting a physical meaning for the off-diagonal contravariant metric tensors is slightly more
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difficult. The g12 metric tensor is expanded as follows:

g12 = g1 ·g2 =
1

∆Vol
(g2 ×g3) ·

1
∆Vol

(g1 ×g3) ≡
A23 ·A13

∆Vol2 (E.126)

where, from the definition of the cross-product, the vector A23 is the area formed by vectors g2 and g3

with direction normal to both g2 and g3 (i.e. in the direction of g1). If the base vectors g1 and g2 are

orthogonal the g12 metric tensor will be zero.

E.6.6 Christoffel Symbol, Γi
jk

The Christoffel symbol of the second kind is calculated from:

Γk
i j =

1
2

gkl
(

∂g jl

∂ξi +
∂gil

∂ξ j −
∂gi j

∂ξl

)
(E.127)

For example, Γ3
12 is given by:

Γ3
12 =

1
2

[
g31
(

∂g21

∂ξ
+

∂g11

∂η
− ∂g12

∂ξ

)
+g32

(
∂g22

∂ξ
+

∂g12

∂η
− ∂g12

∂η

)

+g33
(

∂g23

∂ξ
+

∂g13

∂η
− ∂g12

∂ζ

)]
(E.128)

where ξ1 ≡ ξ, ξ2 ≡ η and ξ3 ≡ ζ. Since the metric tensor is symmetric (gi j = g ji), this can be simpli-

fied:

Γ3
12 =

1
2

[
g31 ∂g11

∂η
+g32 ∂g22

∂ξ
+g33

(
∂g23

∂ξ
+

∂g13

∂η
− ∂g12

∂ζ

)]
(E.129)

To calculate the gradients of the covariant metric tensor, gi j , it is necessary to evaluate gi j at cell

boundaries. The subscripts of the Christoffel symbol are interchangeable (Γk
i j = Γk

ji) and therefore

there are only 18 independent terms, which are summarized below:

Γ1
11 =

1
2

g1l
(

2
∂g1l

∂ξ
− ∂g11

∂ξl

)

=
1
2

[
g11
(

∂g11

∂ξ

)
+g12

(
2

∂g12

∂ξ
− ∂g11

∂η

)
+g13

(
2

∂g13

∂ξ
− ∂g11

∂ζ

)]
(E.130)

Γ1
22 =

1
2

g1l
(

2
∂g2l

∂η
− ∂g22

∂ξl

)

=
1
2

[
g11
(

2
∂g21

∂η
− ∂g22

∂ξ

)
+g12

(
∂g22

∂η

)
+g13

(
2

∂g23

∂η
− ∂g22

∂ζ

)]
(E.131)
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Γ1
33 =

1
2

g1l
(

2
∂g3l

∂ζ
− ∂g33

∂ξl

)

=
1
2

[
g11
(

2
∂g31

∂ζ
− ∂g33

∂ξ

)
+g12

(
2

∂g32

∂ζ
− ∂g33

∂η

)
+g13

(
∂g33

∂ζ

)]
(E.132)

Γ1
12 = Γ1

21 =
1
2

g1l
(

∂g2l

∂ξ
+

∂g1l

∂η
− ∂g12

∂ξl

)

=
1
2

[
g11
(

∂g11

∂η

)
+g12

(
∂g22

∂ξ

)
+g13

(
∂g23

∂ξ
+

∂g13

∂η
− ∂g12

∂ζ

)]
(E.133)

Γ1
13 = Γ1

31 =
1
2

g1l
(

∂g3l

∂ξ
+

∂g1l

∂ζ
− ∂g13

∂ξl

)

=
1
2

[
g11
(

∂g11

∂ζ

)
+g12

(
∂g32

∂ξ
+

∂g12

∂ζ
− ∂g13

∂η

)
+g13

(
∂g33

∂ξ

)]
(E.134)

Γ1
23 = Γ1

32 =
1
2

g1l
(

∂g3l

∂η
+

∂g2l

∂ζ
− ∂g23

∂ξl

)

=
1
2

[
g11
(

∂g31

∂η
+

∂g21

∂ζ
− ∂g23

∂ξ

)
+g12

(
∂g22

∂ζ

)
+g13

(
∂g33

∂η

)]
(E.135)

Γ2
11 =

1
2

[
g21
(

∂g11

∂ξ

)
+g22

(
2

∂g12

∂ξ
− ∂g11

∂η

)
+g23

(
2

∂g13

∂ξ
− ∂g11

∂ζ

)]
(E.136)

Γ2
22 =

1
2

[
g21
(

2
∂g21

∂η
− ∂g22

∂ξ

)
+g22

(
∂g22

∂η

)
+g23

(
2

∂g23

∂η
− ∂g22

∂ζ

)]
(E.137)

Γ2
33 =

1
2

[
g21
(

2
∂g31

∂ζ
− ∂g33

∂ξ

)
+g22

(
2

∂g32

∂ζ
− ∂g33

∂η

)
+g23

(
∂g33

∂ζ

)]
(E.138)

Γ2
12 = Γ2

21 =
1
2

[
g21
(

∂g11

∂η

)
+g22

(
∂g22

∂ξ

)
+g23

(
∂g23

∂ξ
+

∂g13

∂η
− ∂g12

∂ζ

)]
(E.139)

Γ2
13 = Γ2

31 =
1
2

[
g21
(

∂g11

∂ζ

)
+g22

(
∂g32

∂ξ
+

∂g12

∂ζ
− ∂g13

∂η

)
+g23

(
∂g33

∂ξ

)]
(E.140)

Γ2
23 = Γ2

32 =
1
2

[
g21
(

∂g31

∂η
+

∂g21

∂ζ
− ∂g23

∂ξ

)
+g22

(
∂g22

∂ζ

)
+g23

(
∂g33

∂η

)]
(E.141)



234 APPENDIX E. Numerical Treatment of Subgrid Transport Equations

Γ3
11 =

1
2

[
g31
(

∂g11

∂ξ

)
+g32

(
2

∂g12

∂ξ
− ∂g11

∂η

)
+g33

(
2

∂g13

∂ξ
− ∂g11

∂ζ

)]
(E.142)

Γ3
22 =

1
2

[
g31
(

2
∂g21

∂η
− ∂g22

∂ξ

)
+g32

(
∂g22

∂η

)
+g33

(
2

∂g23

∂η
− ∂g22

∂ζ

)]
(E.143)

Γ3
33 =

1
2

[
g31
(

2
∂g31

∂ζ
− ∂g33

∂ξ

)
+g32

(
2

∂g32

∂ζ
− ∂g33

∂η

)
+g33

(
∂g33

∂ζ

)]
(E.144)

Γ3
12 = Γ3

21 =
1
2

[
g31
(

∂g11

∂η

)
+g32

(
∂g22

∂ξ

)
+g33

(
∂g23

∂ξ
+

∂g13

∂η
− ∂g12

∂ζ

)]
(E.145)

Γ3
13 = Γ3

31 =
1
2

[
g31
(

∂g11

∂ζ

)
+g32

(
∂g32

∂ξ
+

∂g12

∂ζ
− ∂g13

∂η

)
+g33

(
∂g33

∂ξ

)]
(E.146)

Γ3
23 = Γ3

32 =
1
2

[
g31
(

∂g31

∂η
+

∂g21

∂ζ
− ∂g23

∂ξ

)
+g32

(
∂g22

∂ζ

)
+g33

(
∂g33

∂η

)]
(E.147)

E.7 Calculation of Wall-Normal Velocity

The subgrid velocity in the ζ-direction is calculated from continuity and scaled, as described in Section

4.3.1. The continuity equation in curvilinear coordinates is given by:

∂ρ
∂t

+
1
J

∂
∂ξ

(
J√
g11

ρU

)
+

1
J

∂
∂η

(
J√
g22

ρV

)
+

1
J

∂
∂ζ

(
J√
g33

ρW

)
= 0 (E.148)

where, U , V and W denote the physical velocity components in the direction of the base vector com-

ponents ξ, η and ζ respectively. For a steady, incompressible flow this expression integrated over a

subgrid cell with volume (∆Vol = J∆ξew∆ηns∆ζtb) gives:

(
J√
g11

U

)

e

−
(

J√
g11

U

)

w︸ ︷︷ ︸
f luxew

+

(
J√
g22

V

)

n

−
(

J√
g22

V

)

s︸ ︷︷ ︸
f luxns

+

(
J√
g33

W

)

t

−
(

J√
g33

W

)

b︸ ︷︷ ︸
f luxb

= 0 (E.149)
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where, for instance, f luxew is the sum of the flux through the east and west subgrid cell faces. This

can be rearranged in terms of the velocity at the top subgrid cell face, Wt , as follows:

Wt = ( f luxb − f luxew − f luxns)

(√
g33

J

)

t
(E.150)

The calculation procedure for the subgrid W -velocity starts from the wall surface where, for a non-

porous wall, it is assumed that the flux through the bottom wall is zero ( f luxb = 0). In the wall-

adjacent subgrid cell one can therefore calculate the W -velocity through the top cell face (Wt) from

Equation (E.150). This calculation is repeated sequentially for each subgrid cell, moving steadily up

the subgrid towards the top boundary. The W -velocity at the subgrid nodes (WP) is then simply the

mean of the top and bottom face values. Once all the W -velocity is known at all the subgrid nodes a

scaling is applied as followed:

W = αW ∗
P (E.151)

where:

α =
W ′

t

(W ∗
t ± tiny)

−3 < α < 3 (E.152)

Subscript t denotes the position at outer edge of the subgrid domain (i.e. top of the main-grid cell),

superscript ∗ denotes the value calculated from continuity and the prime ( ′) denotes the main-grid

value or boundary condition (see also Section 4.3.1).

E.8 Conversion between Contravariant and Cartesian Components

E.8.1 Vector Quantities

The velocity vector, v, can be expressed in terms of the Cartesian base vectors, e i, or the non-

orthogonal curvilinear base vectors, g j , as follows:

v = uiei = v jg j (E.153)

where ui and v j are the Cartesian and non-physical curvilinear components, respectively. One can

similarly write an expression for the position vector r:

r = xiei = ξ jg j (E.154)

Rearranging this expression using the chain rule:

ei =
∂r
∂xi =

∂r
∂ξ j

∂ξ j

∂xi = g j
∂ξ j

∂xi (E.155)
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and substituting for the Cartesian base vector, one obtains:

v = uiei = ui ∂ξ j

∂xi g j (E.156)

Comparing Equations (E.153) and (E.156), the curvilinear velocity components
(
v j
)

must be equiva-

lent to components
(
ui∂ξ j/∂xi

)
:

v j = ui ∂ξ j

∂xi (E.157)

This can be expanded:

v1 = u1ξx +u2ξy +u3ξz (E.158)

v2 = u1ηx +u2ηy +u3ηz (E.159)

v3 = u1ζx +u2ζy +u3ζz (E.160)

and written in matrix form, using the physical velocity components v( j), where v j = v( j)/
√

g j j:




v(1)/
√

g11

v(2)/
√

g22

v(3)/
√

g33




︸ ︷︷ ︸
curvilinear

=




ξx ξy ξz

ηx ηy ηz

ζx ζy ζz




︸ ︷︷ ︸
[J]−1




u1

u2

u3




︸ ︷︷ ︸
Cartesian

(E.161)

where the 3× 3 matrix in the above expression is equivalent to the inverse of the Jacobian matrix

[J]−1. The conversion factor ∂ξ j/∂xi is sometimes given the symbol β j
i .

To reverse the above function and obtain Cartesian velocity components from the curvilinear one

needs to express the curvilinear base vectors in terms of the Cartesian vectors, as follows:

g j =
∂r
∂ξ j =

∂r
∂xi

∂xi

∂ξ j = ei
∂xi

∂ξ j (E.162)

The velocity vector can thus be written:

v = uiei = v jg j = v j ∂xi

∂ξ j ei (E.163)

and so the in Cartesian velocity components
(
ui
)

are given by:

ui = v j ∂xi

∂ξ j (E.164)
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In matrix form using physical contravariant velocity components, this can be written:




u1

u2

u3




︸ ︷︷ ︸
Cartesian

=




xξ xη xζ

yξ yη yζ

zξ zη zζ




︸ ︷︷ ︸
[J]




v(1)/
√

g11

v(2)/
√

g22

v(3)/
√

g33




︸ ︷︷ ︸
curvilinear

(E.165)

where the 3×3 matrix in the above expression is simply the Jacobian matrix, [J].

The inverse Jacobian matrix [J]−1 is found from:

[J]−1 =
1
J

[cof (J)]T (E.166)

where J is the determinant, cof(J) is the matrix of cofactors and [cof (J)]T is the adjoint of the [J]

matrix. This is expanded as follows:

[J]−1 =
1
J

[cof (J)]T

=
1
J




(
yηzζ − yζzη

)
−
(
xηzζ − xζzη

) (
xηyζ − xζyη

)

−
(
yξzζ − zζyξ

) (
xξzζ − xζzξ

)
−
(
xξyζ − xζyξ

)
(
yξzη − yηzξ

)
−
(
xξzη − xηzξ

) (
xξyη − xηyξ

)


 (E.167)

where the Jacobian, J, is given by:

J = xξ
(
yηzζ − yζzη

)
− xη

(
yξzζ − zζyξ

)
+ xζ

(
yξzη − yηzξ

)
(E.168)

E.8.2 Second-Order Tensors

A second-order tensor, such as the Reynolds stress, is expressed in contravariant and Cartesian coor-

dinates as follows:

T = τi jgi ⊗g j = ti jei ⊗ e j (E.169)

Earlier it was show that the covariant base vector, g j, can be written in terms of the Cartesian unit

vector ei:

g j =
∂r
∂ξ j =

∂r
∂xi

∂xi

∂ξ j =
∂xi

∂ξ j ei (E.170)

Substituting this into Equation (E.169):

T = τi j
(

∂xp

∂ξi ep

)
⊗
(

∂xq

∂ξ j eq

)
(E.171)

which can be rearranged:

t pq
︸︷︷︸

Cartesian

=
∂xp

∂ξi

∂xq

∂ξ j τi j
︸︷︷︸

contravariant

(E.172)
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The above equation can be used to convert the Reynolds stress tensor, uiu j from contravariant to

Cartesian coordinates.

The mean strain-rate tensor, U i
, j , is a mixed contravariant and covariant tensor, having both a raised

and a lowered index. To satisfy the summation convention of repeated upper and lower indices, the

subgrid strain-rate tensor must be converted into a fully contravariant second-order tensor before it is

transformed into into Cartesian coordinates, i.e.:

V p,q = U i,k ∂xp

∂ξi

∂xq

∂ξk
= g jkU i

, j
∂xp

∂ξi

∂xq

∂ξk
(E.173)

where V p,q is the Cartesian strain-rate tensor and the contravariant strain-rate tensor is calculated from

Equation (C.96):

U i
, j =

∂
∂ξ j

(
U (i)

√
gii

)
+

U (m)

√
gmm

Γi
m j (E.174)

E.9 Calculation of Pressure Gradient, ∂P/∂ζ

In Section 4.2.2 it was discussed that the subgrid pressure gradient in the ζ-direction (∂P/∂ζ) appears

in the wall-parallel momentum equations when the near-wall grid is skewed in the plane normal to the

wall. This is because the gradient of the pressure in the ζ-direction has a component which is parallel

to the wall (since the ζ-axis is not perpendicular to the wall). The subgrid pressure gradient in the

ζ-direction is calculated from the following expression:

∇P · n̂+(∇ ·ρu⊗u) · n̂ = 0 (E.175)

This states that the sum of the projection of the pressure gradient and the projection of the divergence

of the Reynolds stress tensor in the wall-normal direction is zero. The ∇P and (∇ ·u⊗u) terms are

expanded as follows:

∇P =
∂P
∂ξ j β j

i ei (E.176)

∇ ·u⊗u = gk · ∂
∂ξk

(
uiu jei ⊗ e j

)

=
∂uiu j

∂ξk βk
jei (E.177)

where the Reynolds stress components uiu j are in Cartesian coordinates. To convert from contravari-

ant to Cartesian components, the conversion factor βi
k is introduced which can be shown to be equiv-
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alent to the inverse Jacobian matrix, [J]−1, as follows:

βk
j = e j ·gk =

∂ξm

∂x j gm ·gk =
∂ξm

∂x j δk
m =

∂ξk

∂x j︸︷︷︸
[J]−1

(E.178)

The pressure gradient, ∇P, is expanded further as follows:

∇P =
∂P
∂ξ j β j

i ei =




∂P
∂ξ

β1
1 +

∂P
∂η

β2
1

︸ ︷︷ ︸
Pξη

x

+
∂P
∂ζ

β3
1




e1

+




∂P
∂ξ

β1
2 +

∂P
∂η

β2
2

︸ ︷︷ ︸
Pξη

y

+
∂P
∂ζ

β3
2




e2

+




∂P
∂ξ

β1
3 +

∂P
∂η

β2
3

︸ ︷︷ ︸
Pξη

z

+
∂P
∂ζ

β3
3




e3 (E.179)

and the projection of the pressure gradient in the wall-normal direction is given by:

∇P · n̂ =

(
Pξη

x +
∂P
∂ζ

β3
1

)
nx +

(
Pξη

y +
∂P
∂ζ

β3
2

)
ny +

(
Pξη

z +
∂P
∂ζ

β3
3

)
nz (E.180)

where the wall-normal unit vector is given by:

n̂ = nxe1 +nye2 +nze3 (E.181)
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The divergence of the Reynolds stress tensor is expanded:

∂uiu j

∂ξm βm
j ei =

(
∂uu
∂ξ

β1
1 +

∂uu
∂η

β2
1 +

∂uu
∂ζ

β3
1

+
∂uv
∂ξ

β1
2 +

∂uv
∂η

β2
2 +

∂uv
∂ζ

β3
2

+
∂uw
∂ξ

β1
3 +

∂uw
∂η

β2
3 +

∂uw
∂ζ

β3
3

)

︸ ︷︷ ︸
Sx

e1

+

(
∂vu
∂ξ

β1
1 +

∂vu
∂η

β2
1 +

∂vu
∂ζ

β3
1

+
∂vv
∂ξ

β1
2 +

∂vv
∂η

β2
2 +

∂vv
∂ζ

β3
2

+
∂vw
∂ξ

β1
3 +

∂vw
∂η

β2
3 +

∂vw
∂ζ

β3
3

)

︸ ︷︷ ︸
Sy

e2

+

(
∂wu
∂ξ

β1
1 +

∂wu
∂η

β2
1 +

∂wu
∂ζ

β3
1

+
∂wv
∂ξ

β1
2 +

∂wv
∂η

β2
2 +

∂wv
∂ζ

β3
2

+
∂ww
∂ξ

β1
3 +

∂ww
∂η

β2
3 +

∂ww
∂ζ

β3
3

)

︸ ︷︷ ︸
Sz

e3 (E.182)

and its projection in the wall-normal direction is given by:

(∇ ·u⊗u) · n̂ = (Sxe1 +Sye2 +Sze3) · (nxe1 +nye2 +nze3)

= Sxnx +Syny +Sznz (E.183)

Finally, Equation (E.175) can be rearranged in terms of ∂P/∂ζ:

∂P
∂ζ

= −




(Sxnx +Syny +Sznz)+
(

Pξη
x nx +Pξη

y ny +Pξη
z nz

)

(
β3

1nx +β3
2ny +β3

3nz
)


 (E.184)

Since one needs to find gradients of the Reynolds stress components across the subgrid cells, the

above method requires the subgrid Reynolds stress in Cartesian coordinates to be stored. A similar

method to that described above is used to determine the main-grid pressure on the wall surface in the

STREAM code (see Section 3.3.5).



E.10. Calculation of Wall Shear Stress, τwall 241

E.10 Calculation of Wall Shear Stress, τwall

The wall shear stress, τwall , is calculated using the non-physical contravariant subgrid velocity com-

ponents and then transformed into Cartesian coordinates. The two wall shear stress components, τξ
wall

and τη
wall , in the grid-aligned ξ- and η-directions are calculated from:

τξ
wall = µ

∂U
∂n

= µ

[(
U/

√
g11
)

P −
(
U/

√
g11
)

wall

]

∆n
(E.185)

τη
wall = µ

∂V
∂n

= µ

[(
V/

√
g22
)

P −
(
V/

√
g22
)

wall

]

∆n
(E.186)

where
(
U/

√
g11
)

P and
(
V/

√
g22
)

P are the non-physical contravariant velocity components at the

near-wall subgrid node, Uwall and Vwall are assumed to be zero, and ∆n is the perpendicular distance

from the wall to the adjacent subgrid node3. This distance, ∆n, is calculated from the contravariant

metric tensor, g33, in the near-wall control volume. It was shown in Section E.6.5 that this metric

tensor has the physical meaning:

g33 =

(
A12

∆Vol

)2

(E.187)

where A12 is the cell face area in the ξ−η plane through the midpoint of the cell, and Vol is the cell

volume. Assuming that the top and bottom (wall) faces of the near-wall cell are parallel, the volume

is given by the product of area A12 and the wall-normal distance. The distance from the node (halfway

down the cell) to the wall is therefore given by:

∆n =
1
2

∆Vol
A12

=
1

2
√

g33
(E.188)

The wall shear stress is then transformed into Cartesian components using Equation (E.165):




τx
wall

τy
wall

τz
wall


=




xξ xη xζ

yξ yη yζ

zξ zη zζ




︸ ︷︷ ︸
[J]




τξ
wall

τη
wall

0


 (E.189)

3Non-physical components must be used here since the wall shear stress is subsequently converted into Cartesian coor-
dinates using the Jacobian matrix, [J]. It was shown in Section (E.8) that this Jacobian matrix converts from non-physical
contravariant into Cartesian components.



Appendix F

Transport Equations used in STREAM

The STREAM code uses a nonorthogonal curvilinear grid arrangement but aligns velocity components

to a Cartesian reference frame. The following sections briefly describe the derivation of the RANS

equations in this coordinate system (see also Lien [73]).

F.1 Introduction to Hybrid Curvilinear-Cartesian Coordinates

F.1.1 Vector Components

The velocity vector, v, can be represented as either a function of the covariant base vectors, g j, or as

a function of the Cartesian base vectors, em, as follows:

v = v jg j = umem (F.1)

This can be rearranged:

v j = umem ·g j = umβ j
m (F.2)

where, from Section B.3:

βi
k = ek ·gi =

∂ξ j

∂xk g j ·gi =
∂ξ j

∂xk δi
j =

∂ξi

∂xk︸︷︷︸
[J]−1

(F.3)

The term δi
j is the Kronecker delta (which has substitution-operator properties) and ∂ξ j/∂xm are ele-

ments of the inverse Jacobian matrix, [J]−1.

F.1.2 Covariant Derivative of Vector, v

The derivative of the Cartesian vector in Cartesian coordinates is expanded:

∂
∂x j

(
uiei
)

=
∂ui

∂x j ei +ui ∂ei

∂x j︸ ︷︷ ︸
(F.4)
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where the underbraced term is zero since the Cartesian base vectors do not vary with position. Using

the chain-rule this can also be expressed in terms of the derivative in the covariant coordinates:

∂
∂x j

(
uiei
)

=
∂ui

∂ξk

∂ξk

∂x j ei =
∂ui

∂ξk βk
jei (F.5)

F.1.3 Covariant Derivative of Tensor, T

The Cartesian derivative of the second-order tensor, T = τi jei ⊗ e j, is given by:

∂T
∂xk =

∂
∂xk

(
τi jei ⊗ e j

)

=
∂τi j

∂xk ei ⊗ e j (F.6)

This can be expressed in terms of the curvilinear components, ξm, using the chain-rule, as follows:

∂T
∂xk =

∂τi j

∂ξm

∂ξm

∂xk ei ⊗ e j

=
∂τi j

∂ξm βm
k ei ⊗ e j (F.7)

F.1.4 Gradient of a Scalar, ∇φ

The gradient of the scalar, φ, can be expanded as follows:

∇φ =
∂φ
∂x j e j

=
∂φ
∂ξ j

∂ξk

∂x j e j

=
∂φ
∂ξ j βk

je j (F.8)

where the covariant and contravariant Cartesian base vectors are equivalent e j ≡ e j.

F.1.5 Gradient of a Vector, ∇v

The gradient of the velocity vector in Cartesian coordinates is given by:

∇v = e j ∂
∂x j

(
uiei
)

(F.9)

In Equation (F.5) it was shown that the covariant derivative of a Cartesian vector is as follows:

∂
∂x j

(
uiei
)

=
∂ui

∂ξk βk
jei (F.10)
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The gradient of v therefore becomes:

∇v =
∂ui

∂ξk βk
jei ⊗ e j (F.11)

The components of the tensor ∇v = τi jei ⊗ e j are therefore:

τi j = βk
j
∂ui

∂ξk (F.12)

F.1.6 Divergence of a Vector, ∇ ·v

The divergence of vector v = uiei is given by:

∇ ·v = ek · ∂
∂xk

(
uiei
)

(F.13)

Substituting Equation (F.5) into the above expression and rearranging:

∇ ·v =
∂ui

∂ξ j β j
kei · ek

=
∂ui

∂ξ j β j
kδk

i

=
∂ui

∂ξ j β j
i (F.14)

An alternative expression for ∇ ·v can be obtained by considering the divergence of vector v in curvi-

linear coordinates, as given by Equation (B.133):

∇ ·v =
1
J

∂
∂ξ j

(
Jv j) (F.15)

Converting the curvilinear component v j into Cartesian components, using Equation (F.2), one ob-

tains:

∇ ·v =
1
J

∂
∂ξ j

(
Juiβ j

i

)
(F.16)

Equations (F.14) and (F.16) are equivalent, therefore one can write:

∂ui

∂ξ j β j
i =

1
J

∂
∂ξ j

(
Juiβ j

i

)
(F.17)

Expanding the right-hand-side of the above equation using the product rule, one obtains:

∂ui

∂ξ j β j
i =

∂ui

∂ξ j β j
i +

ui

J
∂

∂ξ j

(
Jβ j

i

)

︸ ︷︷ ︸
zero

(F.18)
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where, in order for the two sides of the above equation to be equal, the underbraced term must be zero.

F.1.7 Divergence of a Tensor, ∇ ·T

Divergence of the second-order tensor, T = τi jei ⊗ e j in Cartesian coordinates is given by:

∇ ·T = ek · ∂
∂xk

(
τi jei ⊗ e j

)
(F.19)

This can also be written, using Equation (F.7):

∇ ·T = ek · ∂τi j

∂ξm βm
k ei ⊗ e j

=
∂τi j

∂ξm βm
k δk

jei

=
∂τi j

∂ξm βm
j ei (F.20)

F.1.8 Summary of Transformation Rules

The following equations are used to derive the RANS equations in a coordinate system where deriva-

tives are taken with respect to non-orthogonal curvilinear vectors r = ξ igi, whilst vector and tensor

parameters are aligned to a Cartesian coordinate system (v = uiei and T = τi jei ⊗ e j).

Scalars

∇φ → ∂φ
∂ξ j β j

i ei (F.21)

Vectors

∇v → βk
j
∂ui

∂ξk ei ⊗ e j (F.22)

∇ ·v → ∂ui

∂ξk βk
i ≡

1
J

∂
∂ξ j

(
Jumβ j

m

)
(F.23)

Tensors

∇ ·T → ∂τi j

∂ξm βm
j ei (F.24)
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F.2 Transport Equations in Hybrid Coordinates

F.2.1 Scalar

The transport equation for scalar, φ, in vector form is given by:

∇ · (ρUφ−q) = Sφ (F.25)

where the scalar flux vector is given by:

q = Γφ∇φ (F.26)

where Γφ is the diffusivity. Using the equations given in Section F.1.8, one obtains the following

scalar transport equation:

∂
∂ξ j

(
Jβ j

mρUmφ− Jβ j
mβn

mΓφ
∂φ
∂ξn

)
= JSφ (F.27)

where the velocity components, U m, are aligned to Cartesian base vectors and gradients are taken with

respect to the curvilinear components, ξ j. The term J is the Jacobian which is equivalent to the cell

volume (see Section B.5).

F.2.2 Momentum

The Reynolds-averaged momentum equation can be written in vector form:

∇ · (ρU⊗U−T) = −∇P (F.28)

where U is the mean velocity vector, T is the second-order stress tensor and P is the mean pressure.

The pressure gradient term is expanded:

−∇P = − ∂P
∂ξ j β j

i ei (F.29)

which can also be written, using Equation (F.18) and the product rule:

−∇P = −
[

∂P
∂ξ j β j

i +
P
J

∂
∂ξ j

(
Jβ j

i

)]
ei

= −1
J

∂
∂ξ j

(
Jβ j

i P
)

ei (F.30)

The divergence of the convective flux is expanded:

∇ · (ρU⊗U) =
∂
(
ρU iUm

)

∂ξ j β j
mei (F.31)
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Following the same approach used above for the pressure gradient, Equation (F.31) can be written:

∇ · (ρU⊗U) =
1
J

∂
∂ξ j

(
Jβ j

mρU iUm)ei (F.32)

The stress tensor is given by:

T = τimei ⊗ em (F.33)

with Cartesian components:

τim = µ

(
∂U i

∂xm +
∂Um

∂xi

)
+δimλ

∂U k

∂xk −ρuium (F.34)

where λ = −2µ/3 is the bulk viscosity. The above equation can be rearranged, using the chain-rule to

express gradients in curvilinear coordinates, as follows:

τim = µ

(
∂U i

∂ξn βn
m +

∂Um

∂ξn βn
i

)
+δimλ

∂U k

∂ξn βn
k −ρuium (F.35)

The divergence of the stress tensor is then:

∇ ·T =
1
J

∂
∂ξ j

(
Jβ j

mτim)ei

=
1
J

∂
∂ξ j

[
Jβ j

mµ

(
∂U i

∂ξn βn
m +

∂Um

∂ξn βn
i

)
+δimλ

∂U k

∂ξn βn
k − Jβ j

mρuium

]
ei (F.36)

Finally, combining Equations (F.30), (F.32) and (F.36), one obtains the following expression for the

momentum equation in hybrid Cartesian-curvilinear coordinates:

∂
∂ξ j

(
Jβ j

mρU iUm − Jβ j
mβn

mµ
∂U i

∂ξn

)

=
∂

∂ξ j

(
−Jβ j

i P+ Jβ j
mβn

i µ
∂Um

∂ξn + Jβ j
mβn

kδimλ
∂U k

∂ξn − Jβ j
mρuium

)
(F.37)
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Other Wall Function Options Explored

G.1 Subgrid Storage Requirements

Storage requirements of the UMIST-N wall function are similar to those of a full low-Re model ap-

proach: values of velocity, turbulence parameters and temperature (if a thermal field is being solved)

are stored in each subgrid cell along the length of the wall1. Clearly, it would be advantageous to

reduce this storage demand. Saving subgrid values is necessary for convection parallel to the wall,

calculation of the wall-normal W -velocity and initialization of the subgrid values at each iteration.

These three components of the UMIST-N wall function are discussed below.

G.1.1 Wall-Parallel Convection

In the UMIST-N wall function, subgrid convection parallel to the wall is approximated using an up-

wind differencing scheme which uses upstream subgrid values. Therefore upstream values of velocity,

turbulence parameters and temperature must be stored. For practical application of the wall function

to complex flows in which one does not have prior knowledge of the flow direction, or in which there

is separation and reattachment, this requires storage of subgrid values along the whole length of the

wall. An alternative scheme was tested during the development of the UMIST-N wall function which

involved using main-grid values for wall-parallel convection. For a wall which is parallel to the x-axis,

in Cartesian coordinates, the wall-parallel convection of scalar, φ, was approximated as:

ρU
∂φ
∂x

= ρUP
(φ′e −φ′w)

∆x
φo

φ︸︷︷︸
(G.1)

where φ represents the wall-parallel velocity component (U), turbulence parameters (k or ε̃) or tem-

perature (T ), φ′
e is the main-grid value of φ at the eastern boundary of the subgrid, determined from

a linear interpolation between main-grid nodes E and O, see Figure G.1, and subscript P refers to the

1In fact, the storage demands are likely to be slightly less than a full low-Re model approach since the subgrid pressure
distribution does not need to be stored and there is effectively a discontinuity in the cell size due to the use of an embedded
grid within the near-wall main-grid cell.
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w

Figure G.1: Calculation of subgrid convection parallel to the wall using main-grid node values

current subgrid node. Rather than assume that the gradients of φ are constant across the whole subgrid

region a scaling factor is introduced (the underbraced term in Equation G.1), based on the ratio of the

main-grid nodal value (φo) to the average subgrid value (φ). This convection scheme was tested in the

impinging jet flow in which the average subgrid value φ was non-zero for all of the parameters: U , k,

ε̃ and T . A modified scaling function or some limit would need to be introduced to prevent unrealistic

values occurring when φ → 0, for example in situations where flow reversal takes place across the

subgrid (so that the average velocity, U , is close to zero). The above wall-parallel convection term

was integrated over the subgrid cell and placed in the discretized subgrid equation source term. The

convection source term in the momentum equation and in the k and ε̃ equations was linearized (by

splitting the source into S = sU + sPφP) to maximize stability. Central differencing was used to dis-

cretize the main-grid gradient term in Equation (G.1). In tests with the impinging jet flow, there was

no change in stability from switching to an upwind scheme and results using the two schemes were

identical.

It was found in the impinging jet flow that using scaled main-grid-values for wall-parallel convec-

tion (Equation G.1) led to instabilities early in the solution process when there were abrupt changes

in the mass flux between neighbouring cells. To obtain a stable solution with a linear k− ε model,

subgrid convection of momentum, and in some cases convection of k and ε̃, was only activated once

the total mass residual fell below a threshold value (in the impinging jet case, this was when the nor-

malized mass residual fell to approximately 5×10−4, which was achieved in roughly one-third of the

total computational time). In addition, it was found that for moderately large near-wall main-grid cell

sizes (y+ > 250) some under-relaxation of the subgrid momentum equations was required (typically,

a factor of α = 0.9 was used). When the cubic non-linear EVM of Craft et al. [67] was used the above

convection treatment was found to be highly unstable. No amount of under-relaxation could stabilize
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the numerical solution for large near-wall cells.

This behaviour contrasts to that observed using the recommended approach of saving subgrid

values along the wall and using these to calculate convection (as described in Section 4). Using

the recommended approach, it is not necessary to wait until the flow-field has settled down before

activating subgrid convection. No under-relaxation of the subgrid momentum equations is required

(even for large near-wall main-grid cells). One is also able to capture changes in the sign of the

gradients across the subgrid, for instance where the k-gradient parallel to the wall (∂k/∂x) is positive

at the outer edge of subgrid but negative near wall. In the scaled main-grid approach the sign of the

gradient across the whole of the subgrid is determined by the main-grid gradient (i.e. ∂k/∂x would

be the same sign across the whole subgrid). Whilst this, in itself, did not seem to be source of the

instability problems encountered with the scaled main-grid convection scheme, it was observed to

lead to “wiggles” in the wall shear stress and Nusselt number profiles in the impinging jet flow.

G.1.2 Calculation of the Subgrid Wall-Normal Velocity

In the UMIST-N wall function, the subgrid wall-normal V -velocity is calculated from continuity

within each of the subgrid control volumes and then the resulting subgrid V -profile is scaled in order

to match the main-grid boundary condition (as described in Chapter 4). In order to interpolate subgrid

velocities to the cell faces, which are used in the discretized continuity equation, one needs to store the

subgrid velocities in the neighbouring subgrid nodes (which, practically, involves storing the subgrid

velocity in each subgrid cell along the length of the wall). An alternative approach is simply to pre-

scribe a V -velocity profile across the subgrid. Low-Reynolds-number model results for the impinging

jet flow showed that the V -velocity varies almost linearly across the subgrid region (see Figure 4.6 on

Page 77). As a first approximation, one could use a linear V -velocity profile, with the boundary val-

ues of V = 0 at the wall (assuming the wall to be non-porous) and, at the opposite face, the main-grid

V -velocity boundary condition (as shown in Figure G.2). However, the gradient of a linear V -velocity

profile in the wall-normal direction would then be constant (∂V/∂y = constant), whereas continuity

implies that ∂V/∂y → 0 at the wall, since ∂U/∂x = 0. In order to satisfy this constraint one can ei-

ther introduce near-wall damping of the V -velocity, or one can assume a non-linear profile across the

whole subgrid. The latter approach was found to be more successful in the impinging jet flow, where

the following power law was assumed:

V = ay1.1 (G.2)

The term a is calculated from a = V ′
n/y1.1

n in order to satisfy the boundary conditions, where V ′
n is the

main-grid velocity at the outer subgrid boundary (y = yn). This prescription was close enough to a

linear profile to agree well with low-Reynolds-number model predictions in the impinging jet flow,

whilst satisfying the condition that ∂V/∂y → 0 as y → 0.

Nusselt number profiles for the impinging jet flow using the prescribed subgrid wall-normal V -

velocity profile are shown in Figures G.3 and G.4, using the linear and non-linear k − ε models,
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Figure G.2: Calculation of the subgrid wall-normal V -velocity
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Figure G.3: Nusselt number profiles obtained for the impinging jet flow using the UMIST-N wall
function with the saved-subgrid convection scheme parallel to the wall (Equation 4.62), prescribed
wall-normal velocity profile (Equation G.2), linear k− ε model and standard Yap correction. Solid
line: low-Re Launder-Sharma model; broken lines: wall function results for different near-wall cell
widths; symbols: experiments of Baughn et al. [94].
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Figure G.4: Nusselt number profiles obtained using the subgrid wall function with the NLEVM of
Craft et al. [67], differential Yap correction, saved-subgrid convection scheme parallel to the wall
(Equation 4.62) and prescribed wall-normal velocity profile (Equation G.2). Solid line: low-Reynolds-
number model; broken lines: wall function results for different near-wall cell widths; symbols: exper-
iments of Baughn et al. [94].

respectively. These can be compared to Figures 5.20 and 5.46 which used the same models with the

recommended scaled-continuity approach to calculate the subgrid V -velocity (as presented in Chap-

ter 4). With the linear model, a slightly higher Nusselt number is predicted with the prescribed V -

velocity approach near the stagnation point (r/D < 2) than with the scaled-continuity approach. The

prescribed velocity profile result is therefore in slightly better agreement with the low-Re model pre-

diction. However, with the non-linear model, the prescribed V -velocity approach overpredicts the

low-Re model Nusselt number near the stagnation point (r/D < 2) by around 6% and shows some

sensitivity to the near-wall cell size. In comparison, the scaled-continuity approach gave results in

excellent agreement with the low-Re model and showed practically no sensitivity to the near-wall

cell size. Modest changes in the prescribed subgrid V -profile were also found to lead to significant

changes in the predicted Nusselt number in the impinging jet flow. Whilst prescribing a V -velocity

profile is a conceptually simple approach which is easy to implement and does not require additional

storage, the recommended practice of calculating V from subgrid continuity removes the reliance of

the UMIST-N wall function on any assumed profiles, which should make the wall function applicable

to a wider range of flows.

Another approach to finding the subgrid V -velocity which was tested in the impinging jet flow

involved the solution of a simplified V -velocity transport equation, which was derived using the same

assumptions that were used to obtain the wall-parallel U -velocity equation (see Chapter 4). This

approach was found to be extremely sensitive to the assumed pressure profile within the subgrid.

One cannot obtain a pressure profile across the subgrid by solving a pressure-correction equation as



G.1. Subgrid Storage Requirements 253

this would introduce additional coupling and lead to computing times for the subgrid wall function

approaching that of a full low-Reynolds-number model solution.

G.1.3 Initialization of Subgrid Values

In the UMIST-N wall function, all the subgrid values of velocity, turbulence parameters and tem-

perature are stored along the length of the wall. This enables the values from the previous subgrid

iteration to be used as initial conditions for the current iteration. If an alternative treatment is em-

ployed in which subgrid values are not stored, the initial conditions for a subgrid calculation can be

taken from neighbouring subgrid values, since the subgrid calculation proceeds sequentially along the

wall (see Figure G.5). One can also scale the adjoining subgrid cell values by a factor corresponding

to the difference in neighbouring main-grid nodal values. This approach was tested in the impinging

jet flow. The scaling factor applied to the subgrid profile at the previous location to provide initial

conditions for the current subgrid solution was based on the difference between the previous and the

current subgrid boundary conditions. In addition to starting from more realistic values, this scaling

removed the possibility of a discontinuity at the outer edge of the subgrid, which may have otherwise

occurred due to the updated boundary conditions. If the current nodal position is assumed to be node

j and the previous position node ( j− 1) then the factor with which the previous subgrid profile was

scaled, is given by:
φb

j

φb
j−1

(G.3)

where the superscript b refers to the subgrid boundary condition for φ at the j or ( j− 1) node. This

scaling was applied to subgrid profiles for U , k, ε̃ and T in the impinging jet flow. The scaling factor

may need to be modified in other flows if the denominator in the above expression, φb
j−1, was close to

zero, for example in situations involving flow reversal (where velocity U b
j−1 may be zero).

The problem with starting the subgrid calculation using initial values scaled from a neighbouring

subgrid cell is that one must perform a number of iterations of the subgrid calculation per main-grid

iteration in order to obtain a converged solution. In the impinging jet flow, around 5 subgrid iterations

were necessary for each main-grid iteration which led to an increase in the overall computing time of

42% compared to the saved-subgrid approach which used one subgrid iteration per main-grid iteration.

G.1.4 Summary

There are three main reasons why the UMIST-N wall function saves subgrid values of velocity, tur-

bulence parameters and temperature (if a thermal field is being solved) at each subgrid node along

the length of the wall. Firstly, the alternative convection treatment involving main-grid values is less

numerically stable. Secondly, using a prescribed wall-normal velocity profile is likely to be less gener-

ally applicable and has been shown to give poorer results in the impinging jet flow with the NLEVM.

Thirdly, the subgrid calculation cannot be initialized accurately without storing subgrid values. If sub-
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Figure G.5: Updating subgrid nodal values for initial conditions

grid values are not stored a number of subgrid iterations must be performed per main-grid iteration,

which leads to prolonged computing times.

In addition to these considerations, if one is storing the subgrid parameters at each subgrid node,

one is able to calculate all the components of the production term in the turbulent kinetic energy

equation (which requires velocity gradients parallel to the wall). When a non-orthogonal grid ar-

rangement is used, one is also able to calculate the subgrid pressure gradient ∂P/∂ζ from gradients in

the Reynolds stresses (as described in Chapter 4).

G.2 Convection Treatment in Curvilinear Coordinates

The convection term in the momentum equations for non-orthogonal curvilinear coordinates, derived

in Appendix C, is given by:

(U ·∇)U =

(
U ( j)

√
g j j

∂U (i)

∂ξ j −U (i)U ( j)
Γm

i jgim

gii
√

g j j
+U ( j)U (m)

Γi
m j
√

gii
√

g j jgmm

)
g(i) (G.4)

In Appendix D, an alternative approach to calculating convection was recommended, rather than ex-

pand the lengthy expression given above. This involved the transformation of the velocity components

in the upstream cell (assuming an upwind convection scheme is employed) from the coordinate system

used in the upstream cell into the coordinate system used in the current cell. This gave the following
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expression:

(U ·∇)U =
U ( j)

√
g j j

(
∂U (i)

∂ξ j

)∗

g(i) (G.5)

The asterisk is introduced around the velocity gradient term to denote that upstream values of U (i) are

transformed into the coordinate system used in the current cell.

Both of the above convection treatments were tested in the Ahmed body flow, discussed in Chapter

7. Equation (G.4) was found to lead to numerical instability in regions where the grid was highly

skewed, such as the 90◦ corner between the base and the underside of the car (where, at the apex of the

corner, the grid was skewed at 45◦ to the wall). The alternative and considerably simpler convection

treatment, given by Equation (G.5), was not found to cause stability problems. The precise cause of

the convergence problem with Equation (G.4) was not traced. Analysis of the flow around the 90◦ rear

corner of the Ahmed body becomes very complex once one has expanded all the geometric terms. It

may be that problems were introduced by using an upwind scheme for the velocity gradient term in

Equation (G.4) whilst using central differencing for the gradients of the metric tensors (used in the

Christoffel symbols). Coding errors cannot be ruled out, especially when dealing with such lengthy

expressions, although every effort was made to ensure that the equations were coded correctly2 . In

order to investigate the matter further it would be easier to study a simpler flow than the Ahmed

body, such as a two-dimensional backward-facing step flow. In such a test-case, one could examine

the effects of using a contoured grid as opposed to a Cartesian grid (as shown in Figure G.6), the

code would run significantly faster and one would not have to consider the effects of the convection

treatment upstream of the corner (as one does for the Ahmed car body). Whilst it would be useful

to find out why the convection treatment of Equation (G.4) was numerically unstable, the alternative

treatment given by Equation (G.5) is to be preferred since it is conceptually simpler, easier to code

and has been shown to be more robust.

2Channel flows were examined using the same code with grids skewed in different planes to ensure that the geometric
parameters were calculated correctly. In addition, the code was run using several different FORTRAN compilers using
various debugging options to see if any array boundaries were exceeded or values used before they were initialized etc.
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[85] I. A. Demirdžić. A finite volume method for computation of fluid flow in complex geometries.

PhD thesis, University of London, 1982.
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Figure 5.4: Low-Reynolds-number 90×70 (axial × radial) grid used in the impinging jet flow calcu-
lations.
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Figure 5.5: Close-up of wall-bounded region, low-Reynolds-number 90 × 70 (axial × radial) grid
used in the impinging jet flow calculations.
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Figure 5.6: Low-Reynolds-number 120×90 grid used in the impinging jet flow calculations.

0 1 2 3 4 5 6

Displacement from Jet Centreline, r/D

0.0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

N
us

se
lt 

N
um

be
r 

N
u/

(R
e0.

7  P
r0.

4 ) 
   

   
 

120x90
90x70
Experiment

Low-Reynolds-Number Grid Refinement Study                                       
Linear k- , CHF                                                             
HD=4, Re=70,000                                                                 29-09-00

Figure 5.7: Comparison of Nusselt number predictions for the impinging jet flow with the 90×70 and
120×70 grids, using a linear k− ε model with the standard Yap correction.
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Figure 5.8: High-Reynolds-number 45× 70 (axial × radial) grid used in the impinging jet flow with
a near-wall cell size DX = 250.
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Figure 5.9: Close-up of wall-bounded region in the high-Reynolds-number 45× 70 (axial × radial)
grid used in the impinging jet flow with a near-wall cell size DX = 250.
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Figure 5.10: Comparison of near-wall region in the impinging jet flow for DX = 500 cells with con-
tinuous near-wall grid size (left) and 2:1 step change in grid size (right).
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Figure 5.11: Comparison of Nusselt number predictions for the impinging jet flow with the DX = 500
continuous (1:1) grid and discontinuous (2:1) grids as shown in Figure 5.10, with the UMIST-N wall
function, NLEVM of Craft et al. [67] and differential Yap correction.
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Figure 5.12: Comparison of Nusselt number predictions for the impinging jet flow using constant
heat flux and constant wall temperature boundary conditions (broken and solid lines respectively).
Both calculations used the low-Re non-linear k − ε model of Craft et al. with the “standard” Yap
correction. Symbols show the data points of the Baughn et al. [94] experiments which used constant
wall temperature boundary conditions.
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Figure 5.13: Radial (wall-parallel) and axial (wall-normal) RMS velocity components for the im-
pinging jet flow at 8 radial positions using the low-Re linear k−ε model with standard Yap correction.
Lines represent the low-Re model predictions and symbols the experimental data of Cooper et al. [95].
—- and 	: radial u

′
component; ...... and 4: axial v

′
component.
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Figure 5.14: Resultant velocity profiles for the impinging jet flow at 6 radial positions using four
“standard” wall functions with the linear k− ε model, standard Yap correction and near-wall cell size
DX = 250. —–: TEAM; - - -: SCL; – . –: CL; .....: JL; 	: experimental data of Cooper et al. [95].
Lines from the four wall function calculations lie on top of each other and have been shown up to the
position of the near-wall node.
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Figure 5.15: Nusselt number profiles obtained for the impinging jet flow using the Launder & Spald-
ing (TEAM) wall function with the linear k− ε model and standard Yap correction. Solid line: low-
Reynolds-number model; broken lines: wall function results for different near-wall cell widths; sym-
bols: experiments of Baughn et al. [94]. Normal stress components are included in the cell-averaged
production term, Pk, of the wall function (see Equation 2.49).
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Figure 5.16: Nusselt number profiles obtained for the impinging jet flow using the simplified Chieng
& Launder wall function with the linear k− ε model and standard Yap correction. Solid line: low-
Reynolds-number model; broken lines: wall function results for different near-wall cell widths; sym-
bols: experiments of Baughn et al. [94]. Normal stress components are included in the cell-averaged
production term, Pk, of the wall function (see Equation 2.49).
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Figure 5.17: Nusselt number profiles obtained for the impinging jet flow using the Chieng & Launder
wall function with the linear k − ε model and standard Yap correction. Solid line: low-Reynolds-
number model; broken lines: wall function results for different near-wall cell widths; symbols: exper-
iments of Baughn et al. [94]. Normal stress components are included in the cell-averaged production
term, Pk, of the wall function (see Equation 2.49).
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Figure 5.18: Nusselt number profiles obtained for the impinging jet flow using the Johnson & Laun-
der wall function with the linear k− ε model and standard Yap correction. Solid line: low-Reynolds-
number model; broken lines: wall function results for different near-wall cell widths; symbols: exper-
iments of Baughn et al. [94]. Normal stress components are included in the cell-averaged production
term, Pk, of the wall function (see Equation 2.49).
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Figure 5.19: Calculated y+
(
= c1/4

µ k1/2
P yP/ν

)
profiles obtained for the impinging jet flow using the

Chieng & Launder wall function with the linear k−ε model and standard Yap correction, correspond-
ing to the Nusselt number profiles shown in Figure 5.17. Broken lines show wall function results for
different near-wall cell widths.
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Figure 5.20: Nusselt number profiles obtained for the impinging jet flow using the UMIST-N wall
function with the linear k− ε model and standard Yap correction. Solid line: low-Reynolds-number
model; broken lines: wall function results for different near-wall cell widths; symbols: experiments
of Baughn et al. [94].
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Figure 5.21: Calculated y+
(
= c1/4

µ k1/2
P yP/ν

)
profiles obtained for the impinging jet flow using the

UMIST-N wall function with the linear k−ε model and standard Yap correction, corresponding to the
Nusselt number profiles shown in Figure 5.20. Broken lines show wall function results for different
near-wall cell widths.
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Figure 5.22: Turbulent kinetic energy profiles in the near-wall region (including the subgrid) at 6
different radial positions measured from the axis of the impinging jet, obtained using the linear k−
ε model and standard Yap correction. —-: UMIST-N wall function with near wall cell size DX = 250
and grid arrangement as shown in Figure 5.9; - - -: low-Reynolds-number model; symbols: main-grid
node values in the wall-function calculation.
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Figure 5.23: Close-up of the wall-bounded region of the impinging jet flow using the high-Reynolds-
number 51×70 grid with near-wall cell size DX = 100.
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Figure 5.24: Turbulent kinetic energy profiles in the near-wall region (including the subgrid) at 6
different radial positions measured from the axis of the impinging jet, obtained using the linear k− ε
model and standard Yap correction. —-: UMIST-N wall function with near wall cell size DX = 100
and grid arrangement as shown in Figure 5.23; - - -: low-Reynolds-number model; symbols: main-
grid node values in the wall-function calculation.
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Figure 5.25: Nusselt number profiles obtained for the impinging jet flow with the linear k− ε model
and standard Yap correction. Dashed line: low-Reynolds-number model; solid line: UMIST-N wall
function result obtained with near wall cell size DX = 100 and grid arrangement as shown in Figure
5.23. Symbols: experiments of Baughn et al. [94].
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Figure 5.26: Close-up of the wall-bounded region in the impinging jet flow using the high-Reynolds-
number 51×70 grid with near-wall cell size DX = 250.
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Figure 5.27: Turbulent kinetic energy profiles in the near-wall region (including the subgrid) at 6
different radial positions measured from the axis of the impinging jet, obtained using the linear k−
ε model and standard Yap correction. —-: UMIST-N wall function with near wall cell size DX = 250
and grid arrangement as shown in Figure 5.26; - - -: low-Reynolds-number model; symbols: main-
grid node values in the wall-function calculation.
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Figure 5.28: Nusselt number profiles obtained for the impinging jet flow using the linear k− ε model
and standard Yap correction. Solid line: low-Reynolds-number model; broken lines: UMIST-N wall
function results for different near-wall cell widths with the grid arrangement outside the near-wall cell
as shown in Figure 5.26 for DX = 250; symbols: experiments of Baughn et al. [94].
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Figure 5.29: Semi-logarithmic velocity profiles for the impinging jet flow at 8 radial locations. —
	—: UMIST-N wall function (circles indicate the position of main-grid nodes); – – –: low-Re model;
– . –: Chieng & Launder wall function; ....: “universal” log-law. All results shown used the linear
k− ε model and standard Yap correction. Wall function calculations used the DX = 250 grid shown
in Figure 5.9. Results shown for r/D = 0 are taken at the node adjacent to the axis of symmetry.
Equation (2.44) is used to define U + and y+.
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Figure 5.30: Semi-logarithmic temperature profiles for the impinging jet flow at 8 radial locations.
—	—: UMIST-N wall function (circles indicate the position of main-grid nodes); – – –: low-Re
model; – . –: Chieng & Launder wall function; ....: “universal” log-law. All results shown used the
linear k− ε model and standard Yap correction. Wall function calculations were performed using the
DX = 250 grid shown in Figure 5.9. Results shown for r/D = 0 are taken at the node adjacent to the

axis of symmetry. The friction velocity used to define y+ was found from Uτ = c1/4
µ k1/2.
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Figure 5.31: Nusselt number profiles for the impinging jet flow obtained using the low-Re linear k−ε
model without any Yap correction, with the standard Yap correction (Equation 2.16) and with the
differential Yap correction (Equation 2.17). Symbols: experiments of Baughn et al. [94].
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Figure 5.32: Nusselt number profiles for the impinging jet flow obtained using the linear k− ε model
and the Chieng & Launder wall function without any Yap correction, with the standard Yap correction
(Equation 2.16) and with the differential Yap correction (Equation 2.17). The standard and differential
Yap correction results are practically identical. The wall function grid used a near-wall cell size
DX = 250. Experimental data points are from of Baughn et al. [94].
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Figure 5.33: Nusselt number profiles for the impinging jet obtained using the linear k − ε model
and the differential Yap correction (Equation 2.17). Solid line: low-Reynolds-number model; broken
lines: UMIST-N wall function results for different near-wall cell widths; symbols: experiments of
Baughn et al. [94].

0 1 2 3 4

Axial displacement, y/D

0

1

2

3

4

5

6

7

R
ad

ia
l d

is
pl

ac
em

en
t, 

r/
D

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

0 1 2 3 4

Axial displacement, y/D

0

1

2

3

4

5

6

7

R
ad

ia
l d

is
pl

ac
em

en
t, 

r/
D

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

Figure 5.34: Contour plots of the dimensionless turbulent kinetic energy
(
k/U2

bulk

)
for the impinging

jet flow obtained using the low-Re linear k− ε model (left) and the low-Re NLEVM (right). Axial
displacement is measured from the entrainment boundary, i.e. the wall is located at y/D = 4.5.
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Figure 5.35: Radial (wall-parallel) and axial (wall-normal) RMS velocity components for the imping-
ing jet flow at 8 radial positions using the NLEVM with the differential Yap correction and the cµ

function of Equation (2.36). Lines represent the low-Re model predictions and symbols the experi-
mental data of Cooper et al. [95]. —- and 	: radial u

′
component; ...... and 4: axial v

′
component.
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Figure 5.36: Turbulent shear stress (in the axial-radial plane) for the impinging jet flow at 8 radial
positions using the NLEVM with the differential Yap correction and the cµ function of Equation
(2.36). Lines represent the low-Re model predictions and symbols the experimental data of Cooper et
al. [95].
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Figure 5.37: Nusselt number profiles obtained for the impinging jet flow using the Launder & Spald-
ing (TEAM) wall function with the non-linear k− ε model, the cµ function of Equation (2.36) and
differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function re-
sults for different near-wall cell widths; symbols: experiments of Baughn et al. [94]. Normal stress
components are included in the cell-averaged production term, Pk, of the wall function (see Equation
2.49).
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Figure 5.38: Nusselt number profiles obtained for the impinging jet flow using the simplified Chieng
& Launder wall function with the non-linear k − ε model, the cµ function of Equation (2.36) and
differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94]. Normal stress
components are included in the cell-averaged production term, Pk, of the wall function (see Equation
2.49).
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Figure 5.39: Nusselt number profiles obtained for the impinging jet flow using the Chieng & Launder
wall function with the non-linear k− ε model, the cµ function of Equation (2.36) and differential Yap
correction. Solid line: low-Reynolds-number model; broken lines: wall function results for different
near-wall cell widths; symbols: experiments of Baughn et al. [94]. Normal stress components are
included in the cell-averaged production term, Pk, of the wall function (see Equation 2.49).
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Figure 5.40: Nusselt number profiles obtained for the impinging jet flow using the Johnson & Launder
wall function with the non-linear k− ε model, the cµ function of Equation (2.36) and differential Yap
correction. Solid line: low-Reynolds-number model; broken lines: wall function results for different
near-wall cell widths; symbols: experiments of Baughn et al. [94]. Normal stress components are
included in the cell-averaged production term, Pk, of the wall function (see Equation 2.49).
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Figure 5.41: Calculated y+
(
= c1/4

µ k1/2
P yP/ν

)
profiles obtained for the impinging jet flow using the

Chieng & Launder wall function with the non-linear k− ε model, the cµ function of Equation (2.36)
and differential Yap correction, corresponding to the Nusselt number profiles shown in Figure 5.39.
Broken lines show wall function results for different near-wall cell widths.
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Figure 5.42: Nusselt number profiles obtained for the impinging jet flow using the Chieng & Launder
wall function with the NLEVM of Craft et al. [67], the cµ-function given by Equation (2.36) and
the differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94]. Normal stress
components are not included in the cell-averaged production term, Pk, of the wall function.
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Figure 5.43: Nusselt number profiles obtained for the impinging jet flow using the Chieng & Launder
wall function with the NLEVM of Craft et al. [67], the cµ-function given by Equation (2.36) and
the differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94]. The cell-
averaged production term, Pk, of the wall function is modified by assuming that the normal stresses
vary linearly across the fully-turbulent region of the near-wall cell.
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Figure 5.44: Nusselt number profiles obtained for the impinging jet flow using the Chieng & Launder
wall function with the NLEVM of Craft et al. [67], the cµ-function given by Equation (2.36) and
the differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94]. The cell-
averaged production term, Pk, of the wall function is modified by assuming that the normal stresses
vary linearly across the fully-turbulent region of the near-wall cell and that the Reynolds stresses vary
according to their wall-limiting behaviour across the viscous sublayer.
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Figure 5.45: Nusselt number profiles obtained for the impinging jet flow using the Chieng & Launder
wall function with the NLEVM of Craft et al. [67], the cµ-function given by Equation (2.36) and
the differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94]. Wall function
results obtained using ∂U/∂y calculated from the derivative of the log-law in the near-wall cell for the
non-linear stress terms and cµ function.
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Figure 5.46: Nusselt number profiles obtained for the impinging jet flow using the UMIST-N wall
function with the NLEVM of Craft et al. [67], the cµ-function given by Equation (2.36) and the
differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94].
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Figure 5.47: Nusselt number profiles obtained for the impinging jet flow using the UMIST-N wall
function with the NLEVM of Craft et al. [30], the cµ-function given by Equation (2.33) and the
differential Yap correction. Solid line: low-Reynolds-number model; broken lines: wall function
results for different near-wall cell widths; symbols: experiments of Baughn et al. [94].
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Figure 5.48: Semi-logarithmic velocity profiles for the impinging jet flow at 8 radial locations. —
	—: UMIST-N wall function (circles indicate the position of main-grid nodes); – – –: low-Re model;
– . –: Chieng & Launder wall function; ....: “universal” log-law. All results shown used the non-
linear k− ε model with the cµ function given by Equation (2.36) and differential Yap correction. Wall
function calculations used the DX = 250 grid shown in Figure 5.9. Results shown for r/D = 0 are
taken at the node adjacent to the axis of symmetry. Equation (2.44) is used to define U + and y+.
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Figure 5.49: Semi-logarithmic temperature profiles for the impinging jet flow at 8 radial locations.
—	—: UMIST-N wall function (circles indicate the position of main-grid nodes); – – –: low-Re
model; – . –: Chieng & Launder wall function; .....: “universal” log-law. All results shown used the
non-linear k− ε model with the cµ function given by Equation (2.36) and differential Yap correction.
Wall function calculations were performed using the DX = 250 grid shown in Figure 5.9. Results
shown for r/D = 0 are taken at the node adjacent to the axis of symmetry. The friction velocity used

to define y+ was found from Uτ = c1/4
µ k1/2.
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Figure 5.50: Nusselt number profiles for the impinging jet obtained using the low-Re NLEVM of Craft
et al. [67] and the cµ-function given by Equation (2.36) without any Yap correction, with the standard
Yap correction (Equation 2.16) and with the differential Yap correction (Equation 2.17). Symbols:
experiments of Baughn et al. [94].
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Figure 6.2: Low-Reynolds-number 90×70 (radial×axial) grid used in the free-disc flow.
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Figure 6.4: Low-Reynolds-number 150×70 (radial×axial) grid used in the free-disc flow.
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Figure 6.5: Predicted Nusselt number in the free-disc flow with the low-Re linear k− ε model using
three different radial grid densities; - - -: 90×70 grid; .....: 120×70 grid; ——: 150×70 grid.

1 2 4 7 10 20 40 70 100 200

*104

Rotational Reynolds Number, Re

10

30

60

100

300

600

1000

3000

6000

Lo
ca

l N
us

se
lt 

N
um

be
r

t=10
t=400

ExperimentLow-Re Linear k-  QUICK Standard Yap                                        
70x120 vs 70x150, Different Initial Conditions, 10  with UVW solved first   
                                                                                
03-04-01

Figure 6.6: Predicted Nusselt number in the free-disc flow with the low-Re linear k− ε model for the
120×70 grid; �: location of radial nodes.
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Figure 6.7: Low-Reynolds-number 120×120 grid used in the free-disc flow.
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Figure 6.8: Predicted Nusselt number in the free-disc flow with axial refinement of the grid using
the low-Re Launder & Sharma model; —–: 120× 70 (radial×axial) grid; - - -: 120× 120 grid; a.)
semi-log scale (left); b.) linear scale (right).
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Figure 6.9: Predicted dimensionless wall distance, y+ = Uτy/ν (where Uτ =
√

τwall/ρ and τwall is the
resultant wall shear stress), in the free-disc flow with axial refinement of the grid using the low-Re
Launder & Sharma model; —–: 120×70 (radial×axial) grid; - - -: 120×120 grid; a.) wall-adjacent
node (left); b.) tenth node from the wall (right).
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Figure 6.10: High-Reynolds-number 120×22 (radial×axial) grid used in the free-disc flow.
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Figure 6.11: High-Reynolds-number 120×25 (radial×axial) grid used in the free-disc flow.
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Figure 6.12: High-Reynolds-number 120×28 (radial×axial) grid used in the free-disc flow.
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Figure 6.13: High-Reynolds-number 120×30 (radial×axial) grid used in the free-disc flow.
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Figure 6.14: Predicted Nusselt number in the free-disc flow using the UMIST-N wall function and
linear k− ε model with different subgrid node density for the 120×28 main-grid (the key shows the
number of subgrid nodes with the expansion ratio used to generate the subgrid mesh in parentheses).
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Figure 6.15: Predicted Nusselt number in the free-disc flow using the low-Re Launder & Sharma k−ε
model with different initial turbulence levels; ◦: Cobb & Saunders experiments; a.) local Nusselt
number (top); b.) integral Nusselt number (bottom).
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Figure 6.16: Predicted Nusselt number in the free-disc flow with two initial turbulence conditions,
——: k = 10−5 (Ωrb)

2 and µt = 10µ; - - -: k = 10−5 (Ωrb)
2 and µt = 400µ. Results obtained with the

simplified Chieng & Launder (left) and Chieng & Launder wall function (right).
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Figure 6.17: Predicted Nusselt number in the free-disc flow using the Chieng & Launder wall function
with two different levels of under-relaxation; ——: αU,V,W = 0.1, αP = 0.2, αk,ε = 0.1 and αT = 0.4;
- - -: αU,V,W = 0.2, αP = 0.3, αk,ε = 0.1 and αT = 0.4.
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Figure 6.18: Predicted turbulent length scale gradient
(∣∣∂l/∂x j

∣∣) in the free-disc flow. Radial distance
(r/D) is on the horizontal axis and axial distance (y/D) on the vertical axis. Transition from laminar
to turbulent flow can be seen to occur at r/D ≈ 0.12.

0.0
0.01

0.02
0.03

0.04
0.05

0.06
0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1
1.0

10.0
100.0

1000.0
10000.0

100000.0
1000000.0

10000000.0

Y
ap                         

C
orrection               

0.0 0.01 0.02 0.03 0.04 0.05 0.06
0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.1
1.0

10.0
100.0

1000.0
10000.0

100000.0
1000000.0

10000000.0

Yap                         

Correction               

Figure 6.19: Predicted Yap correction using Equation (2.17) and cw = 0.83 in the free-disc flow.
Radial distance (r/D) is on the horizontal axis and axial distance (y/D) on the vertical axis.
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Figure 6.20: Predicted Yap correction in the free-disc flow using Equation (2.17) with cw given by
Equation (2.20). Radial distance (r/D) is on the horizontal axis and axial distance (y/D) on the
vertical axis.
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Figure 6.21: Predicted Nusselt number in the free-disc flow using the low-Reynolds-number NLEVM:
——: with differential Yap correction; - - -: without differential Yap correction; ◦: experimental
values from Cobb & Saunders [130]; a.) local Nusselt number (left); b.) integral Nusselt number
(right).



3090.0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0.0

0.005

0.01

0.015

0.02

0.025

0.03

0.0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0.0

0.005

0.01

0.015

0.02

0.025

0.03

Low-Re Linear k-  QUICK Standard Yap                                        
70x120 vs 70x150, Different Initial Conditions, 10  with UVW solved first   
                                                                                03-04-01

          60         

          60         

        3600       

          60         

          60         

        3600       

Figure 6.22: 60×60 grid used for laminar free-disc flow validation.
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Figure 6.23: Velocity profiles for laminar free-disc flow; lines show the solution of the von Kármán
equations by Owen & Rogers [132] ....: U/Ωr; —–: −V/
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Ων; - - -: W/Ωr; (where U , V and W

are respectively the radial, axial and tangential velocity); symbols indicate corresponding velocity
predictions using the linear k− ε model and the 60× 60 grid shown in Figure 6.22 at three different
rotational Reynolds numbers, Reφ = 9000, 25000 and 49000.
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Figure 6.24: Predicted moment coefficient for laminar free-disc flow using the linear k− ε model and
the 60× 60 grid shown in Figure 6.22. ◦: Cochran’s numerical solution of von Kármán’s equations
for laminar flow over the free-disc [131].
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Figure 6.25: Radial and tangential velocity profiles in the free-disc flow using the TEAM wall function
and linear k− ε model with the 120×28 grid; —	—: high-Re model prediction (circles indicate the
position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.26: Radial and tangential velocity profiles in the free-disc flow using the simplified Chieng &
Launder wall function and linear k−ε model with the 120×28 grid; —	—: high-Re model prediction
(circles indicate the position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.27: Radial and tangential velocity profiles in the free-disc flow using the Chieng & Launder
wall function and linear k−ε model with the 120×28 grid; —	—: high-Re model prediction (circles
indicate the position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.28: Radial and tangential velocity profiles in the free-disc flow using the UMIST-N wall
function and linear k − ε model with the 120× 28 grid; —	—: high-Re model prediction (circles
indicate the position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.29: Radial and tangential velocity profiles in the free-disc flow using the TEAM wall function
and linear k− ε model with the 120×28 grid; —	—: high-Re model prediction (circles indicate the
position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.30: Radial and tangential velocity profiles in the free-disc flow using the simplified Chieng &
Launder wall function and linear k−ε model with the 120×28 grid; —	—: high-Re model prediction
(circles indicate the position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.31: Radial and tangential velocity profiles in the free-disc flow using the Chieng & Launder
wall function and linear k−ε model with the 120×28 grid; —	—: high-Re model prediction (circles
indicate the position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.32: Radial and tangential velocity profiles in the free-disc flow using the UMIST-N wall
function and linear k − ε model with the 120× 28 grid; —	—: high-Re model prediction (circles
indicate the position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.33: Predicted tangential wall shear stress, given by τwall,φ/
[
0.5ρ(Ωrb)

2
]
× 106, in

the free-disc flow using the TEAM wall function and linear k − ε model. Solid line: low-
Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.50).
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Figure 6.34: Predicted radial wall shear stress, given by τwall,r/
[
0.5ρ(Ωrb)

2
]
× 106, in the free-

disc flow using the TEAM wall function and linear k − ε model. Solid line: low-Re model; bro-
ken lines: wall function results for different grid arrangements (for corresponding y+ val-
ues for these grids see Figure 6.50).
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Figure 6.35: Predicted tangential wall shear stress, given by τwall,φ/
[
0.5ρ(Ωrb)

2
]
×106, in the free-

disc flow using the simplified Chieng & Launder wall function and linear k− ε model. Solid line:
low-Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.51).
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Figure 6.36: Predicted radial wall shear stress, given by τwall,r/
[
0.5ρ(Ωrb)

2
]
× 106, in the free-

disc flow using the simplified Chieng & Launder wall function and linear k− ε model. Solid line:
low-Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.51).
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Figure 6.37: Predicted tangential wall shear stress, given by τwall,φ/
[
0.5ρ(Ωrb)

2
]
× 106, in the

free-disc flow using the Chieng & Launder wall function and linear k − ε model. Solid line: low-
Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.52).
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Figure 6.38: Predicted radial wall shear stress, given by τwall,r/
[
0.5ρ(Ωrb)

2
]
× 106, in the free-

disc flow using the Chieng & Launder wall function and linear k − ε model. Solid line: low-
Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.52).
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Figure 6.39: Predicted tangential wall shear stress, given by τwall,φ/
[
0.5ρ(Ωrb)

2
]
× 106, in the

free-disc flow using the UMIST-N wall function and linear k − ε model. Solid line: low-
Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.53).
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Figure 6.40: Predicted radial wall shear stress, given by τwall,r/
[
0.5ρ(Ωrb)

2
]
× 106, in the

free-disc flow using the UMIST-N wall function and linear k − ε model. Solid line: low-
Re model; broken lines: wall function results for different grid arrangements (for corresponding
y+ values for these grids see Figure 6.53).
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Figure 6.41: Predicted integral Nusselt number in the free-disc flow using the TEAM wall function
and linear k− ε model. Solid line: low-Re model; broken lines: wall function results for different grid
arrangements (for corresponding y+ values for these grids see Figure 6.50); ◦: experimental values
from Cobb & Saunders [130].
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Figure 6.42: Predicted local Nusselt number in the free-disc flow using the TEAM wall function and
linear k − ε model. Solid line: low-Re model; broken lines: wall function results for different grid
arrangements (for corresponding y+ values for these grids see Figure 6.50).
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Figure 6.43: Predicted integral Nusselt number in the free-disc flow using the simplified Chieng &
Launder wall function and linear k − ε model. Solid line: low-Re model; broken lines: wall func-
tion results for different grid arrangements (for corresponding y+ values for these grids see Figure
6.51); ◦: experimental values from Cobb & Saunders [130].
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Figure 6.44: Predicted local Nusselt number in the free-disc flow using the simplified Chieng &
Launder wall function and linear k − ε model. Solid line: low-Re model; broken lines: wall func-
tion results for different grid arrangements (for corresponding y+ values for these grids see Figure
6.51).
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Figure 6.45: Predicted integral Nusselt number in the free-disc flow using the Chieng & Launder wall
function and linear k − ε model. Solid line: low-Re model; broken lines: wall function results for
different grid arrangements (for corresponding y+ values for these grids see Figure 6.52); ◦: experi-
mental values from Cobb & Saunders [130].
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Figure 6.46: Predicted local Nusselt number in the free-disc flow using the Chieng & Launder wall
function and linear k − ε model. Solid line: low-Re model; broken lines: wall function results for
different grid arrangements (for corresponding y+ values for these grids see Figure 6.52).



326 FIGURES

1 2 4 7 10 20 40 70 100 200

*104

Rotational Reynolds Number, Re

10

30

60

100

300

600

1000

3000

6000

In
te

gr
al

 N
us

se
lt 

N
um

be
r

22x120
25x120
28x120
30x120
Low-Re
Experiment

Figure 6.47: Predicted integral Nusselt number in the free-disc flow using the UMIST-N wall function
and linear k−ε model. Solid line: low-Re model; broken lines: wall function results for different main-
grid arrangements (for corresponding y+ values for these grids see Figure 6.53); ◦: experimental
values from Cobb & Saunders [130].
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Figure 6.48: Predicted local Nusselt number in the free-disc flow using the UMIST-N wall function
and linear k − ε model. Solid line: low-Re model; broken lines: wall function results for different
main-grid arrangements (also shown on linear axes in Figure 6.49). For corresponding y+ values for
these grids see Figure 6.53.
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Figure 6.49: Predicted Nusselt number in the free-disc flow using the UMIST-N wall function and
linear k− ε model. Solid line: low-Re model; broken lines: wall function results for different main-
grid arrangements (also shown on log-axes in Figure 6.48).
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Figure 6.50: Dimensionless wall distance, y+ = c1/4
µ k1/2y/ν, of the wall adjacent node in the free-

disc flow using the TEAM wall function and linear k − ε model with different grid arrangements,
corresponding to the Nusselt number predictions shown in Figure 6.41 and 6.42.
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Figure 6.51: Dimensionless wall distance, y+ = c1/4
µ k1/2y/ν, of the wall adjacent node in the free-disc

flow using the simplified Chieng & Launder wall function and linear k− ε model with different grid
arrangements, corresponding to the Nusselt number predictions shown in Figure 6.43 and 6.44.
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Figure 6.52: Dimensionless wall distance, y+ = c1/4
µ k1/2y/ν, of the wall adjacent node in the free-disc

flow using the Chieng & Launder wall function and linear k− ε model with different grid arrange-
ments, corresponding to the Nusselt number predictions shown in Figure 6.45 and 6.46.
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Figure 6.53: Dimensionless wall distance, y+ = c1/4
µ k1/2y/ν, of the wall adjacent node in the free-disc

flow using the UMIST-N wall function and linear k− ε model with different main-grid arrangements
corresponding to the Nusselt number predictions shown in Figures 6.47, 6.48 and 6.49.
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Figure 6.54: Predicted Nusselt number in the free-disc flow using the low-Reynolds-number linear
k−ε model of Launder & Sharma and the non-linear k−ε model of Craft et al. [67]; —–: NLEVM; -
- -: linear k− ε; ◦: Cobb & Saunders experiments; a.) integral Nusselt number (top) b.) local Nusselt
number (bottom).
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Figure 6.55: Radial and tangential velocity profiles in the free-disc flow using the low-Reynolds-
number linear k− ε model of Launder & Sharma and the non-linear k− ε model of Craft et al. [67]
at three different rotational Reynolds numbers; ——: NLEVM; .....: linear k− ε; ♦: Cham & Head
experiments.
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Figure 6.56: Radial and tangential velocity profiles in the free-disc flow using the low-Reynolds-
number linear k− ε model of Launder & Sharma and the non-linear k− ε model of Craft et al. [67]
at three different rotational Reynolds numbers; ——: NLEVM; .....: linear k− ε; - - -: “universal”
log-law.
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Figure 6.57: Predicted normal stresses (non-dimensionalized with the square of the local wall veloc-
ity) in the free-disc flow using the low-Reynolds-number linear k−ε model of Launder & Sharma and
the non-linear k− ε model of Craft et al. [67] at three different rotational Reynolds numbers; ——:
NLEVM; .....: linear k− ε.
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Figure 6.58: Predicted shear stresses (non-dimensionalized with the square of the local wall velocity)
in the free-disc flow using the low-Reynolds-number linear k − ε model of Launder & Sharma and
the non-linear k− ε model of Craft et al. [67] at three different rotational Reynolds numbers; ——:
NLEVM; .....: linear k− ε.
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Figure 6.59: Radial and tangential velocity profiles in the free-disc flow using the low-Reynolds-
number linear k−ε model of Launder & Sharma at three different rotational Reynolds numbers, shown
in Figure 6.55, overlaid on the same set of axes (lines indicate computational results and symbols are
experimental measurements by Cham & Head); —— and �: Reφ = 2× 106; ....... and ◦: Reφ =
1×106; - - - and M: Reφ = 3.4×105.
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Figure 6.60: Radial and tangential velocity profiles in the free-disc flow using the TEAM wall function
and non-linear k−ε model with the 120×28 grid; —	—: high-Re model prediction (circles indicate
the position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.61: Radial and tangential velocity profiles in the free-disc flow using the simplified Chieng
& Launder wall function and non-linear k− ε model with the 120× 28 grid; —	—: high-Re model
prediction (circles indicate the position of nodes); .....: low-Re model prediction; ♦: Cham & Head
experiments.
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Figure 6.62: Radial and tangential velocity profiles in the free-disc flow using the Chieng & Launder
wall function and non-linear k− ε model with the 120× 28 grid; —	—: high-Re model prediction
(circles indicate the position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.63: Radial and tangential velocity profiles in the free-disc flow using the UMIST-N wall
function and non-linear k−ε model with the 120×28 grid; —	—: high-Re model prediction (circles
indicate the position of nodes); .....: low-Re model prediction; ♦: Cham & Head experiments.
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Figure 6.64: Radial and tangential velocity profiles in the free-disc flow using the TEAM wall function
and non-linear k−ε model with the 120×28 grid; —	—: high-Re model prediction (circles indicate
the position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.65: Radial and tangential velocity profiles in the free-disc flow using the simplified Chieng
& Launder wall function and non-linear k− ε model with the 120× 28 grid; —	—: high-Re model
prediction (circles indicate the position of nodes); .....: low-Re model prediction; - - -: “universal”
log-law.



342 FIGURES

1 5 10 50 100 500 1000

y =k1/2y/    

0

10

20

30

40

Re =0.34E+06     

Radial V = k1/2V/ r              

1 5 10 50 100 500 1000

y =k1/2y/    

0

10

20

30

40

Re =0.34E+06     

Tangential W = k1/2(Ww-W)/

1 5 10 50 100 500 1000

y =k1/2y/    

0

10

20

30

40

Re =0.10E+07     

Radial V = k1/2V/ r              

1 5 10 50 100 500 1000

y =k1/2y/    

0

10

20

30

40

Re =0.10E+07     

Tangential W = k1/2(Ww-W)/

1 5 10 50 100 500 1000

y =k1/2y/    

0

10

20

30

40

Re =0.20E+07     

Radial V = k1/2V/ r              

1 5 10 50 100 500 1000

y =k1/2y/    

0

10

20

30

40

Re =0.20E+07     

Tangential W = k1/2(Ww-W)/

Figure 6.66: Radial and tangential velocity profiles in the free-disc flow using the Chieng & Launder
wall function and non-linear k− ε model with the 120× 28 grid; —	—: high-Re model prediction
(circles indicate the position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.67: Radial and tangential velocity profiles in the free-disc flow using the UMIST-N wall
function and non-linear k−ε model with the 120×28 grid; —	—: high-Re model prediction (circles
indicate the position of nodes); .....: low-Re model prediction; - - -: “universal” log-law.
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Figure 6.68: Predicted integral Nusselt number in the free-disc flow using the TEAM wall function
and non-linear k− ε model. Solid line: low-Re model; broken lines: wall function results for different
grid arrangements; ◦: experimental values from Cobb & Saunders [130].
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Figure 6.69: Predicted integral Nusselt number in the free-disc flow using the simplified Chieng &
Launder wall function and non-linear k− ε model. Solid line: low-Re model; broken lines: wall func-
tion results for different grid arrangements; ◦: experimental values from Cobb & Saunders [130].



345

1 2 4 7 10 20 40 70 100 200

*104

Rotational Reynolds Number, Re

10

30

60

100

300

600

1000

3000

6000

In
te

gr
al

 N
us

se
lt 

N
um

be
r

22x120
25x120
28x120
30x120
Low-Re
Experiment

Figure 6.70: Predicted integral Nusselt number in the free-disc flow using the Chieng & Launder wall
function and non-linear k− ε model. Solid line: low-Re model; broken lines: wall function results for
different grid arrangements; ◦: experimental values from Cobb & Saunders [130].
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Figure 6.71: Predicted integral Nusselt number in the free-disc flow using the UMIST-N wall function
and non-linear k− ε model. Solid line: low-Re model; broken lines: wall function results for different
grid arrangements; ◦: experimental values from Cobb & Saunders [130].
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Figure 7.1: Ahmed body geometry (taken from Ahmed et al. [137]).
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Figure 7.2: Drag breakdown measured by Ahmed et al. [137] for varying slant angle, ϕ.
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Figure 7.3: Schematic representation of the Ahmed body with low drag flow β ≈ 20◦ (taken from
Ahmed et al. [137]).
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Figure 7.4: Schematic representation of the Ahmed body with high drag flow β = 30◦ (taken from
Ahmed et al. [137]).

Figure 7.5: Oil/soot streakflow visualization on the rear of the Ahmed body with slant angles 25◦

(left) and 35◦ (right) (taken from Lienhart et al. [138]).
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Figure 7.6: Schematic representation of the flow over the 25◦ rear slant of the Ahmed body (taken
from from Spohn & Gilliéron. [139]).

Figure 7.7: Grid on nose cone and front portion of Ahmed body (taken from Robinson [35]).
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Figure 7.8: Grid used on rear section and slant of 25◦ Ahmed body (taken from Robinson [35]).

Figure 7.9: Grid on symmetry plane and floor showing some refinement propagated at block bound-
aries (taken from Robinson [35]).
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Figure 7.10: Block arrangement for the Ahmed body (25◦ slant angle) showing block numbers and
coordinate frames.
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Figure 7.11: Sketch of domain in third angle projection used for Ahmed body calculations (taken from
Robinson [35]). Lengths are non-dimensionalized with L = 0.288m, the height of the body.
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Figure 7.12: Sketch showing position of boundary layer measurements on the central part of the
Ahmed body (taken from information supplied to participants of the 2002 ERCOFTAC Workshop on
Refined Turbulence Modelling).
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Figure 7.13: Streamwise mean U -velocity profiles at six positions on the top surface of the Ahmed
body (for position of points see Figure 7.12), —-: linear k−ε with SCL wall function; ....: linear k−ε
with UMIST-N wall function; ◦: experimental measurements from Lienhart et al. [138].
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Figure 7.14: Streamwise RMS u
′
-profiles at six positions on the top surface of the Ahmed body (for

position of points see Figure 7.12), —-: linear k− ε with SCL wall function; ....: linear k− ε with
UMIST-N wall function; ◦: experimental measurements from Lienhart et al. [138].
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Figure 7.15: Streamwise mean U -velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−831mm on the top surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-N
wall function; ....4....: linear k−ε with SCL wall function; (symbols indicate position of grid nodes).
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Figure 7.16: Streamwise mean U -velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−475mm on the top surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-N
wall function; ....4....: linear k−ε with SCL wall function; (symbols indicate position of grid nodes).
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Figure 7.17: Streamwise mean U -velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−346mm on the top surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-N
wall function; ....4....: linear k−ε with SCL wall function; (symbols indicate position of grid nodes).
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Figure 7.18: Streamwise mean U -velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−244mm on the top surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-N
wall function; ....4....: linear k−ε with SCL wall function; (symbols indicate position of grid nodes).
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Figure 7.19: Wall-parallel mean velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−194mm on the slant surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-
N wall function; ....4....: linear k − ε with SCL wall function; (symbols indicate position of grid
nodes).
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Figure 7.20: Wall-parallel mean velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−165mm on the slant surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-
N wall function; ....4....: linear k − ε with SCL wall function; (symbols indicate position of grid
nodes).
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Figure 7.21: Wall-parallel mean velocity, turbulent kinetic energy and eddy-viscosity at x ≈
−109mm on the slant surface and on centreline of the Ahmed body, —	—: linear k−ε with UMIST-
N wall function; ....4....: linear k − ε with SCL wall function; (symbols indicate position of grid
nodes).
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Figure 7.22: Mean U -velocity profiles over the Ahmed body 25◦ rear slant, ——: linear k− ε with
UMIST-N wall function; - - -: linear k−ε with SCL wall function; 4: experimental measurements of
Lienhart et al. [138].
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Figure 7.23: Mean W -velocity profiles over the Ahmed body 25◦ rear slant, ——: linear k− ε with
UMIST-N wall function; - - -: linear k−ε with SCL wall function; 4: experimental measurements of
Lienhart et al. [138].
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Figure 7.24: RMS u
′
-velocity profiles over the Ahmed body 25◦ rear slant, ——: linear k− ε with

UMIST-N wall function; - - -: linear k−ε with SCL wall function; 4: experimental measurements of
Lienhart et al. [138].
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Figure 7.25: RMS w
′
-velocity profiles over the Ahmed body 25◦ rear slant, ——: linear k− ε with

UMIST-N wall function; - - -: linear k−ε with SCL wall function; 4: experimental measurements of
Lienhart et al. [138].
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Figure 7.26: Turbulent kinetic energy profiles over the Ahmed body 25◦ rear slant, ——: linear
k − ε with UMIST-N wall function; - - -: linear k − ε with SCL wall function; 4: experimental
measurements of Lienhart et al. [138].
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Figure 7.27: uw-stress profiles over the Ahmed body 25◦ rear slant, ——: linear k− ε with UMIST-N
wall function; - - -: linear k− ε with SCL wall function; 4: experimental measurements of Lienhart
et al. [138].
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Figure 7.28: Velocity vectors and pressure coefficient contours on the Ahmed body 25◦ rear slant.
The left half of the picture shows results from the linear k−ε model with UMIST-N wall function and
the right half the linear k− ε model with SCL wall function. Velocity vectors shown are taken from
values at the main-grid node adjacent to the wall surface.
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Figure 7.29: Velocity vectors on the Ahmed body 25◦ rear slant, as viewed from above (the axis of
symmetry is on the right-hand y-axis). Results were obtained using the linear k−ε model and UMIST-
N wall function. Velocity vectors in red are the near-wall main-grid node values whilst vectors in blue
are from the subgrid node which is closest to the wall (i.e. the subgrid node that is used to calculate the
wall shear stress). Differences in the direction of the red and blue arrows therefore indicate skewing
of the velocity vector between the main-grid node and the wall. The red vectors correspond to those
shown on the left-hand-side of Figure 7.28. All vectors have been specified with unit length.
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Figure 7.30: Velocity vectors and turbulent kinetic energy contours (in m2s−2) around the rear of the
Ahmed body. The left half of the pictures show experimental data from Lienhart et al. [138] and
the right half predictions using the linear k− ε model with UMIST-N wall function. The outline of
the Ahmed body is shown in solid lines and the slant edge in broken lines. The top picture is at
x = −178mm, the middle at x = −138mm and bottom at x = −88mm.
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Figure 7.31: Velocity vectors and turbulent kinetic energy contours (in m2s−2) around the rear of the
Ahmed body. The left half of the pictures show experimental data from Lienhart et al. [138] and
the right half predictions using the linear k− ε model with UMIST-N wall function. The outline of
the Ahmed body is shown in solid lines and the slant edge in broken lines. The top picture is at
x = −38mm, the middle at x = 0mm and bottom at x = 80mm.
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Figure 7.32: Velocity vectors and turbulent kinetic energy contours (in m2/s2) around the rear of the
Ahmed body. The left half of the pictures show experimental data from Lienhart et al. [138] and
the right half predictions using the linear k− ε model with UMIST-N wall function. The outline of
the Ahmed body is shown in solid lines and the slant edge in broken lines. The top picture is at
x = 200mm and the bottom at x = 500mm.



371

-1
25

0
-1

00
0

-7
50

-5
00

-2
50

0
25

0
50

0

-1
25

0
-1

00
0

-7
50

-5
00

-2
50

0
25

0
50

0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

010
0

20
0

30
0

40
0

50
0

60
0

70
0

1

1 
- 

3

3 
- 

6

6 
- 

10

10
 -

 1
5

15
 -

 3
5

35
 -

 5
5

55
 -

 7
5

75
 -

 9
5

m
2
/s

2
95

T
ur

bu
le

nt
 K

in
et

ic
 E

ne
rg

y,
 k

   

Li
ne

ar
 k

-
   

   

U
M

IS
T

-N
   

   
   

   
 

Li
ne

ar
 k

-
   

   

S
C

L 
W

F
   

   
   

   
  

-1
25

0
-1

00
0

-7
50

-5
00

-2
50

0
25

0
50

0

-1
25

0
-1

00
0

-7
50

-5
00

-2
50

0
25

0
50

0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

010
0

20
0

30
0

40
0

50
0

60
0

70
0

1

1 
- 

3

3 
- 

6

6 
- 

10

10
 -

 1
5

15
 -

 3
5

35
 -

 5
5

55
 -

 7
5

75
 -

 9
5

m
2
/s

2
95

T
ur

bu
le

nt
 K

in
et

ic
 E

ne
rg

y,
 k

   

Li
ne

ar
 k

-
   

   

U
M

IS
T

-N
   

   
   

   
 

Li
ne

ar
 k

-
   

   

S
C

L 
W

F
   

   
   

   
  

Figure 7.33: Turbulent kinetic energy contours around the Ahmed body at y = 0 using the linear k− ε
model with the UMIST-N wall function (top) and the linear k− ε model with the Simplified Chieng
& Launder wall function (bottom).
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Figure 7.34: Turbulent kinetic energy contours around the Ahmed body at y = 0 using the realizable
linear k− ε model with the SCL wall function (top) and the non-linear k− ε model with the SCL wall
function (bottom). Both realizable and non-linear model computations were undertaken by Robinson
[35].
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Figure 7.35: Profiles of the wall-parallel U -velocity at five positions around the 90◦ rear corner of
the Ahmed body, A, B, C, D and E , shown in Figure 7.36. Results were obtained using the linear
k−ε model with the UMIST-N wall function (including the ∂P/∂ζ term). Symbols indicate main-grid
nodal values and the subgrid velocity distribution is also shown. The wall-normal distance is non-
dimensionalized with the height of the car body (L = 288mm) and velocity with the free-stream value(
U0 = 38.51ms−1

)
.
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Figure 7.36: Sketch of the rear corner of the Ahmed body showing the local grid arrangement and the
location of profiles used in Figures 7.35, 7.37 and 7.38.
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Figure 7.37: Profiles of the three pressure-gradient source terms appearing in the subgrid U -
momentum equation at position C adjacent to the 90◦ rear corner of the Ahmed body, shown in
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obtained using the linear k− ε model with the UMIST-N wall function. The wall-normal distance is
non-dimensionalized with the height of the car body (L = 288mm).
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Figure 7.38: Profiles of the wall-parallel U -velocity at five positions around the 90◦ rear corner of
the Ahmed body, shown in Figure 7.36. Results were obtained using the linear k− ε model with the
UMIST-N wall function (without the ∂P/∂ζ term). Symbols indicate main-grid nodal values and the
subgrid velocity distribution is also shown. The wall-normal distance is non-dimensionalized with the
height of the car body (L = 288mm) and velocity with the free-stream value

(
U0 = 38.51ms−1

)
.


